
. .- ...

SECURITY CLASSIFICATION OF THIS PTE (If's.. Date. Entered),

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

I. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER %

AFIT/CI/NR-86- 24D.

4. TITLE (and Subtitle) S. TYPE OF REPORT I PERIOD COVERED

Decision Processes in Influence Diagrams: 'DSTIFormulation and Analysis* W/Ff/G/DISSERTATION
Fm t ad a i6. PERFORMING O 1G. REPORT NUMBER

7. AUTHOR(&) 8. CONTRACT OR GRANT NUMBER(a)

Joseph A. Tatman

D 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

AFIT STUDENT AT:

Stanford University i

I1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

1 AFIT/NR 1985
WPAFB OH 45433-6583 13. NUMBER OF PAGES

152
14. MONITORING AGENCY NAME a ADDRESS(If different from Controlling Office) 15. SECURITY CLASS. (of this report) ..

UNCLASS

a. DECLASSIFICATIONDOWNGRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, It different from Report)

1B. SUPPLEMENTARY NOTES

APPROVED FOR PUBLIC RELEASE: IAW AFR 190-1 AoRrch"J
Denfr Research an~

Professional Development
AFIT/NR, WPAFB OH 45433-6583

19 KEY WORDS (Continue or, reverse side if necessary rnd Identify by block number)

CD DTIC
I...

"jj 20. ABSTRACT (C 'f, side itsary and Identify by block number) '

DD I, JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE

SECURITY CLASSIFICATION OF THIS PACE (Illien Data Entered)

--- .-. . ,. *, ..*;,' • ,. . ..

- -+-, e- • . ,
._._ .. '

ABSTRACT I
SThis thesis addresses the problem of extending influence diagram theory such that

decision processes can be effectively modeled within this graphical modeling language.

Specifically, the extension allows value function separability and the principle of

optimality to be captured in an influence diagram and then used in analysis. To

accomplish this, the concept of a subvalue node has been developed. The set of value

preserving operations on influence diagrams have been expanded to include operations1i

that exploit the presence of these nodes. Also an algorithm has been developed to solve ~

influence diagrams with subvalue nodes.

This work is important from two perspectives. From the decision analysisJ

perspective, it allows a full and simple exploitation of all separability in the value

function of a decision problem. Importantly, this means that algorithms can be

designed to solve influence diagrams that automatically recognize the opportunity for

applying the principle of optimality. From the decision processes perspective,

influence diagrams with subvalue nodes allow efficient formulation and solution of

nonstandard decision processes. Also it allows the conditional independence among

the variables in the problem to be exploited. This significantly reduces the data storage

requirements and computational complexity of solving the problem. Finally, the

influence diagram wkith subvalue nodes enhances understanding of many of the critical

characteristics of various decision processes t is concluded that the concept of a

subvalue node is both consistent wvith previous influence diagram theory and expands7

V the application potential of that theory to include a rather large and important class of

decision problems, namely decision processes.

14

iv

86 4 8 05 0

AFIT RESEARCH ASSESSMENT

The purpose of this questionnaire is to ascertain the value alnd/or contribution of research
accomplished by students or faculty of the Air Force Institute of Technology (AU). It would be
greatly appreciated if you would complete the following questionnaire and return it to:

AFIT/NR N"
Wright-Patterson AFB OH 45433

RESEARCH TITLE:

AUTHOR:

RESEARCH ASSESSMENT QUESTIONS:

1. Did this research contribute to a current Air Force project?

() a. YES () b. NO
2. Do you believe this research topic is significant enough that it would have been researched

(or contracted) by your organization or another agency if AFIT had not?'

a. YES () b. NO
3. The benefits of AFIT research can often be expressed by the equivalent value that your

agency achieved/received by virtue of AFIT performing the research. Can you estimate what this
research would have cost if it had been accomplished under contract or if it had been done in-house
in terms of manpower and/or dollars?

a. MAN-YEARS () b. $
4. Often it is not possible to attach equivalent dollar values to research, although the

results of the research may, in fact, be important. Whether or not you were able to establish an
equivalent value for this research (3. above), what is your estimate of its significance?

a. HIGHLY () b. SIGNIFICANT () c. SLIGHTLY () d. OF NO
SIGNIFICANT SIGNIFICANT SIGNIFICANCE

* 5. AFIT welcomes any further comments you may have on the above questions, or any additional
details concerning the current application, future potential, or other value of this research.

.*. Please use the bottom part of this questionnaire for your statement(s). -. ,

NAME GRADE POSITION

ORGANIZATION LOCATION

STATEMENT(s):

Accesion For
NTIS CRA&I
DTIC TAB -3
UiannouiCed "
Justification

By
Di;,t ib.tion I .

Availability Codes -A "

Avail ao'd IorSpecial .2..

A-IJir

* .., *. .. * .

DECISION PROCESSES IN INFLUENCE DIAGRAMS:
FORMULATION AND ANALYSIS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF

ENGINEERING-ECONOMIC SYSTEMS

AND THE COMMiIT'FEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

by

Joseph A. Tatman
December 1985

-.4°.

.--r

4.

- -4

r

S.4 * *4** .4. 44 -. 4.4. 4*4 .. 4

Joseph~ A.Tta

K%

ACKNOWLEDGMENTS

I have much to thank God for upon completing this thesis. First and foremost, the I

successful completion of this thesis within the time constraints imposed by my sponsor

would have been impossible without the constant support of my adviser, Ross

Shachter. His broad background, quickness in discerning new ideas and deep concern

for his students greatly improved the quality of the thesis and my Stanford education in

general.

Ron Howard provided many insights that resulted in important improvements in

the thesis. My style in teaching and leading research will be strongly influenced by my

association with Ron and Ross. Edison Tse provided guidance and support throughout

my years at Stanford and read my thesis in a severely limited time period. The thesis

was substantially improved by discussing it with Jim Matheson.

The U.S. Air Force generously sponsored my Ph.D. program. I would especially

like to mention Dr. David Lee, formerly of the Air Force Institute of Technology, who

was responsible for this sponsorship.

Dave Luenberger convinced me that EES was the place for me over four years ago

now. His textbooks and the writings of Ron Howard are foundation stones of my

professional abilities as an analyst. Nancy Florence, Susan Clement, Mako Bockholt

and Alma Gaylord not only make the department work smoothly, but provide a warmth

and friendliness that make it a good place to be.

My parents, Gregg and Katherine Tatman, instilled in me a love for education.

Their support for my career and their love throughout my life have been absolutely

V

slls.The thesis belongs tmyfamily, Sharon, Joshua and Kate, as much as i

does to me. Their love and support were irreplaceable in the harder times of my V

Stanford program. Our church family at Menlo Park Pre~sbyterian Church provided a

spiritual environment for my family in which we could not only survive te Ph.D. .*.,

program but be happy and grow as individuals and as a family.

IF

Vi

Contents

h..

1 INTRODUCTION 1
1.1 Influence Diagrams 2
1.2 Decision Processes 11
1.3 Goal of this Research 16
1.4 Summary of Results 17
1.5 Related Work 20
Notes and References 24

2 THE SUBVALUE NODE 26
2.1 Motivation for Subvalue Nodes 26
2.2 Subvalue Node Structures and Separability Properties 32
2.3 Reductions for Influence Diagrams with Subvalue Nodes 40
2.4 Automatic Introduction of Subvalue Nodes 51
Notes and References 56

3 ALGORITHM FOR INFLUENCE DIAGRAMS WITH SUBVALUE
NODES 57

3.1 Introduction 57

3.2 Preliminaries 59
3.3 Subvalue Nodes and the Algorithm 63
3.4 The Algorithm 72
Notes and References 75

4 COALESCENCE AND THE PRINCIPLE OF OPTIMALITY

76
4.1 Coalescence and Influence Diagrams 76
4.2 The Principle of Optimality and Influence Diagrams 81
Notes and References 97

vii

r)..* '.

V, 7,

5 APPLICATIONS 98
5.1 Markov Decision Processes 99
5.2 Markov Decision Process with Time Lag 112
5.3 Partially Observable Markov Decision Process 118
5.4 Inventory Problem with Forecasts and Correlated Demands 130
5.5 Voyager Mars 138
Notes and References 146

6 CONCLUSIONS AND FURTHER RESEARCH 147
6.1 Further Research 147
6.2 Conclusions 148
Notes and References 149 ..-

REFERENCES 150

ViiL

. . .oo.

-. . .-. .* -° .'.- ,.-o-.

ab

FIGURES

1.1 Influence diagram definitions. 3
1.2 A simple influence diagram with data subframe for one node. 5
1.3 The primitive influence diagram reductions. 7
1.4 Influence diagram representation of an MDP. 12
1.5 The influence diagram of the partially observable Markov decision process.

13
1.6 Influence diagram of a decision process with time lag. 14 9
1.7 Influence diagram of a decision process from the Voyager Mars decision

analysis. 15
1.8 An MDP with random rewards. 18
1.9 Three stage decision process with the state variable broken up into its

component variables. 19
1.10 A decision process with an added variable. 20
2.1 Influence diagram for an MDP. 28
2.2 One step of the dynamic programming algorithm. 29
2.3 The set of subvalue nodes R in Property 1. 33
2.4 Example for Property 2, expectation over a product node. 35
2.5 Example for Property 3, maximization over a sum node. 36
2.6 A subvalue node influence diagram. 38
2.7 Simplifying the stages of an MDP. 42
2.8 Subvalue node b is a blocking product node with respect to nodes r and x.

43
2.9 Influence diagram for the example. 46
2.10 Node x removed by expectation of r with respect to x. 47
2.11 Subvalue nodes r and s are summed into w. 48
2.12 Node d removed by maximization of w over d. 49
2.13 a) Subvalue nodes u and w summed, b) Expectation of V with respect to y,

c) Expectation of V with respect to z. 50
2 14 Introducing a partial sum node in an MDP. 52
2. 15 An MDP with random rewards. 54

3.1 Influence diagram for cost of expectation example. 60
3.2 Influence diagram for cost of applying Bayes rule example. 60
3.3 Influence diagram for cost of maximization example. 61
3.4 Influence diaram for subvalue subtrce definition. 62
3.5 Subvalue nodes u and w should be summed per the subset rule. 66
3.6 Subvalue nodes r(2) and v(3) must be multiplied before expectation with

respect to x(3). 68
3.7 Example showing conditions of the subset rule are not necessary. 69
4.1 Example of nonseparable coalescence. 77
4.2 Example of Fig. 4.1 as an influence diagram. 78
4.3 Example of separable coalescence. 78
4.4 Example of Fig. 4.3 as an influence diagram. 79
4.5 Tree for an asymmetric decision problem. 80
4.6 Three stag-e %iDP. 82
4.7 Equivalent tree for the influence diagram in Fig. 4.6. 82
4.8 Solution steps for an .MDl and its truncated version. 84
4.9 The unshaded part of the .lDP corresponds to a decision process formed by

deleting all nodes except X(1 and its successors. 88

XI

&.-:.---7.-..

ix ::i1

ip%

. ."

.1. 4.10 An MDP with subvalue node r introduced as in the proof of the proposition.
89

4.11 Pilot model for NASA's Voyager Mars project. 90
4.12 Partially observable Markov decision process. 91
4.13 Reformulated partially observable Markov decision process. 92
4.14 Two similar decision processes with large differences in computational

complexity. 93
4.15 First few solution steps for the decision processes in Fig. 4.13. 95
5. 1 a Graph of the influence diagram for an additive MDP. 100
5.1 b Data frame of the influence diagram for an additive MDP. 101
5.2 First few steps of the solution process for the additive MDP. 102
5.3 Influence diagram for a risk sensitive MDP with exponential utility function.

106
5.4 An MD? with random rewards including the data subframe for the value

node. 107
5.5 First few steps of the solution procedure for the MDP with random rewards.

Ill
5.6 Markov decision process with time lag. 113
5.7 Solving the influence diagram for the MDP with time lag. 114
5.8 A partially observable Markov decision process. 119
5.9 Inserting a variable representing the probability distribution of a chance node.

121
5.10 Reformulation of the POMDI' to a form suitable for the available algorithms.

123
5.11 Alternative formulation of the MDP. 131
5.12 The three stage inventory problem. 132
5.13 Solving the inventory problem. 133
5.14 Influence diagram for inventory problem in standard NIDP format. ,

5.15 Influence diagram of the Voyager Mars simple pilot model. 139
5.16 Solving the Voyager Mars simple pilot model. 141
5.17 Computational complexity using the different modeling techniques.

145

'L .. "

xr

iX - ~ - - ~-

ABBREVIATIONS AND SYMBOLS

C: set of all chance nodes in an influence diagram -

C(x): conditional (or direct) predecessors of chance node x in an influence
diagram

C(X): if X is a set of nodes, then C(X) is the set of nodes that directly precede a
node in X but are not themselves in X

D: set of all decision nodes in an influence diagram K

ExiC(x): expectation with respect to x conditioned on C(x), the conditional
predecessors of x

F: set of all deterministic nodes in an influence diagram

l(d): set of informational (or direct) predecessors of decision node d

Md'1(d): maximization with respect to d conditioned on 1(d), the informational
predecessors of d

,2D: Cartesian product of the sets of alternatives for each decision node in D

Q2X: Cartesian product of the sets of outcomes for each chance node in X

t probability distribution for chance node x

S(x): set of direct successors of node x

V: set of all subvalue nodes in an influence diagram including the value node

W(x): weak predecessors of node x (includes x, its conditional predecessors and [...

its indirect predecessors)

IF. .

x

~1.~' -- ~. * I.. V.. * . t.d

...

Chapter 1

Introduction
I-.

°" a

Decision analysis has established itself in the last twenty years as a theory and

methodology for applying quantitative analysis to important decision problems in an

uncertain, complex and dynamic world. Decision analysis has been applied to a broad

spectrum of decision problems from strategic planning in business to social policy

decisions. Some specific examples include the decision to seed hurricanes, selection of

mission configuration on the space project Voyager Mars, analysis of a synthetic fuels

commercialization program and the forecasting of exploratory research and

development success.

Decision analysis emerged in the early 1960's from a combination of decision

theory and systems analysis. It has several important defining characteristics.

Quantitative models are developed to represent decision problems and full use is made

of computers to analyze these models. Subjective probabilities and probability theory

are used to represent and analyze uncertainty. A single measure is used to assign

values to outcomes of interest, both monetary and nonmonetary. The risk and time

preference of the decision maker are explicitly and quantitatively encoded into the

• , ,-, ,- . . t.

* decision model. Sensitivity analysis and value of information calculations are used to

systematically reduce or expand the decision model to a size commensurate 'With the

importance of the problem.

Within decision analysis a modeling language known as influence diagrams has

evolved. Influence diagrams have been used for several years as a tool for formulation

of decision analysis problems in both the academic environment and professional

practice. Recently, the development of computer tools have made it feasible to not only

formulate but also to analyze decision models as influence diagrams. Two major

reliability problems and several medical decision analysis problems have been

successfully analyzed within the influence diagram framework.

This introductory chapter begins with a brief introduction to influence diagrams. "

Influence diagrams are then used to introduce decision processes. The goal of this

research and a summary of results are then presented. Finally, related research is

discussed.

1.1 INFLUENCE DIAGRAMS

Definition

Influence diagrams are a modeling language. Probabilistic inference and decision

analysis models can be easily represented as influence diagrams. Influence diagrams

are hierarchical, containing a top level graph with data as the second level. They are

mathematically precise. Each object in an influence diagram maps to an object in the

probability calculus. Each transformation of an influence diagram maps to an operation
V A

in the probability calculus. Because they are mathematically precise, influence

diaorams can be used to both formulate and analyze a decision problem.

2._

Influence diagrams can be formally defined using the terminology of graph theory.

An influence diagram is a directed graph with no cycles. There are four different kinds

of nodes: decision nodes represent decision variables, chance nodes represent random

variables, deterministic nodes represent deterministic functions and value nodes

represent the maximum expected value of the problem.

Arcs into decision nodes represent information known to the decision maker at the

time the decision must be made. Arcs into chance nodes represent probabilistic

dependence of the successor upon its predecessors. Importantly, the absence of an arc

between two chance nodes indicates that the corresponding two variables are

conditionally independent. The absence of an arc from a decision node to a chance

node indicates that the corresponding random variable is conditionally independent of

the corresponding decision variable. The influence diagram as a whole represents a

specific expansion of the joint probability distribution of the random variables in the

problem. Fig. 1.1 contains a summary of these definitions.

O random variable : decision variable

: deterministic variable : value function

-.* O : probabilistic dependence

,..D : information available

Figure 1.1. Influence diagram definitions.

3..

..

-7 %6 T. 1'.C .-- M7l- W

The set of all nodes in an influence diagram are designated by N. The set of all

chance nodes is designated by C, the set of all decision nodes by D and the set of all

deterministic nodes by F. The set containing the value node is designated by V. For

decision node d, I(d) designates the information available to the decision maker when

decision d must be made, that is I(d) is the set of all direct predecessors of d. We call

these the informational predecessors of d. For chance, deterministic or value

node x, C(x) designates the set of variables that condition x which are all of the direct

predecessors of x. We call these the conditional predecessors of x. Similarly, if

X is a set of nodes, we use C(X) to denote the set of nodes which are direct

predecessors of some node in X but are not themselves in X. W(y) is used to represent -

the weak predecessors of y, that is the set of nodes that includes y, the predecessors

of y and all other nodes in the diagram that have a directed path to y. Finally, we use

S(y) to designate the direct successors of y. In these cases, y is any element of N.

Now let there be a directed path from some chance or decision node y to a

deterministic node r, such that each node on that path is a deterministic node. Let fr be L.
the deterministic function associated with r. Then fr is a composite function to which y

is an argument; that is, fr is a function of y. We call y a functional predecessor of

r. For example, if we have fr = fr(s) and s = s(w,z), then fr could be written as a

function of w and z. Variables s, w and z are all functional predecessors of r.

In this thesis it is important to designate the set of chance and decision nodes that

are functional predecessors of a specified subvalue node r. Since there are no

deterministic nodes in the influence diagrams considered in this thesis, this set contains

those chance and decision nodes which directly precede an element of all subvalue node

predecessors (direct and indirect) of r. From the above we see that this set is C(r) (r

and all its subvalue node predecessors).

4

I-.:

,"r .

I-- - "

With each chance node x is associated a subframe of data containing the outcome

space of x, Qx , the probability distribution of x, x, and the predecessors of x, C(x).

With each decision node d is a data subframe containing the alternatives of the

associated decision variable, fZd, and the predecessors of d, I(d).

An example of an influence diagram is shown in Fig. 1.2. Only the subframe for

node x of the underlying data frame is shown. This graph can be interpreted as

follows. The variables x and z are independent given y. Also, the variables z, x and r

are conditionally independent of d. The only decision variable is d. The decision

maker will know the outcome of random variable y before decision d must be made but

will not know the outcome of x and z. The value function of the decision problem, V,

is a function of d, r, y and z. Because

V= V(d, r(x), y, z) f(d,x,y,z)

x is a functional predecessor of V. Note that the probability distribution of x is stored

in an array. .2

(x (kind chance)(preds y) '

Y. x(outcomes a b c)
(probs array#580118A2)

-'. ~(succs r)) ""-

Figure 1.2. A simple influence diagram with data subframe for one node.

5
.-.'_.--.... ::...

:-..--. -..... :.* .*.

7 M -4. %b C r:~ .y T~T~~ r IW"-. -

r *

II A.i--7

-

V.. The decisions in an influence diagram are totally ordered. Also, one of the basic

assumptions in decision theory is that when making decision d, a decision maker

knows the chosen alternative for all previous decisions and all information known at the

* ~time of previous decisions. This "no forgetting"' implies that every decision node d...-

should have as predecessors all previous decisions plus all direct predecessors of all .

previous decisions. Since this would clutter up the influence diagram, all of these arcs

are not shown. Only those arcs into d that represent information not previously known

for any decision and those arcs necessary to establish a total ordering of the decisions

are contained explicitly in the diagram. The others, called implicit arcs, are not

contained explicitly in the diagram, but must be considered when analyzing the

influence diagram.

If a node in an influence diagram has no successors, then no matter what value it

assumes no other node in the diagram is effected. Such nodes are called barren and

can be deleted from the diagram.

Now, each influence diagram represents a specific expansion of the joint

probability distribution of the random variables in the diagram. Also each influence

diagram with a value node may be solved for a maximum expected value and an optimal

policy. A reduction of the influence diagram may now be defined. Analysis of the

influence diagram utilizes a set of these reductions (or value preserving

transformations).

Definition. An operation that transforms influence diagram A to influence diagram B

is a reduction (or value preseri-ing) if B has a joint probability distribution

consistent with A and if the optimal policy and expected value implied by B is the

same as that implied by A. -

6

Fig. 1.3 provides a summary of the primitive influence diagram reductions and the

conditions necessary for each. It does not include the new reductions to be developed

in this thesis.

°,~ o*..

X~

(a) Application of Bayes rule (reversal of the x to y arc). Condition: no
alternate path from x to y.

"' 5

(b) Summation of x out of the x,y joint distribution (removal of x into y by
summation). Condition: y is the only successor of x.

/
X V-

(c) Expectation of V with respect to x (removal of x into V by expectation).
Condition: V is the only successor of x.

7 r-

....................... A

. I .I . .

-.- ..:.

*.r

d V .

bb

(d) Maximization of V with respect to d (removal of d into V by maximization). I..
Condition: V is the only successor of d and C(V)\d is contained in I(d). ..

Figure 1.3. The primitive influence diagram reductions. ..

Influence diagrams as defined in this section have proven to be an effective tool for

representing and analyzing probabilistic inference and decision analysis models. The

advantages of influence diagrams are discussed next.

Advantages

The problem of this thesis has been motivated by the effectiveness of influence

diagrams as a modeling language for static decision analysis problems. This

effectiveness has many different aspects. One of the most important of these is that

influence diagrams both capture the structural and qualitative aspects of the decision

problem as well as serve as the framework for efficient quantitative analysis of the

problem. There is no need to translate the model from a framework that is effective for

modeling and formulation to one that is effective for analysis. Influence diagrams are

effective for both.

This dual role of influence diagrams also allows partially solving an influence

diagram resulting in a simplified but meaningful intermediate model that is itself a valid

influence diagram. The intermediate model consists of a subset of the original variables

in the problem. perhaps those considered most critical by the decision maker. These

intermediate models, among other advantages, support efficient sensitivity analysis.

8

* . .r. - - .

A suteavnaeof influence diagrams is that they discourage errors in uhe

modeingand nalsisprocss.For xamlethe influence diagram explicitly

represents the timing of infornmation availability. This forces the modeler to consider inr

a precise way what information becomes available and when it becomes available. This

reduces the chance of modeling errors related to information timing.

Influence diagrams grew out of attempts to effectively represent decision models in

a form suitable for automatic computation. This goal has been achieved and two other

advantages of influence diagrams for automatic computation have come to light. First,

independence in a decision problem. For example, consider a decision problem

represented as a symmetric tree, that is a decision tree in which every trajectory contains

all variables in the model and every combination of outcomes corresponds to a

trajectory. Such a symmetric tree can be solved more efficiently as an influence

diagram. Also, influence diagrams serve as an effective basis for the development of

algorithms that produce the optimal solution strategy for computer solution of decision

problems. These algorithms depend heavily on graph theory, exploiting the fact that

~ the influence diagram is a graphical representation of the decision problem.

Finally, but importantly, influence diagrams have proven to be an effective tool for

not only communicating decision models among decision analysts and decision makers,

but also for communication between the analyst and the computer.

The advantages discussed above come from a combination of the following

ingredients:

a) The dominant object represented by the influence diagram is the mathematically

defined dependency and information structure of the problem.

b) This structure is at the same time, the most important information about the

problem for purposes of analysis and a natural and intuitive representation of

9

-. Z

the structural aspects of the problem which the decision maker finds most

important.

c) This structure is captured in the influence diagram as a graph. Thus, graph

theory techniques can be used in analysis of the decision model. Also,

graphical representations are natural and intuitive for the decision maker.

d) The influence diagram is a two level hierarchy. This hierarchy allows the

effective consideration of the critical structural aspects of the model in the top"..2

level of the hierarchy, a graphical framework uncluttered by quantitative .-

details. However, these quantitative details are captured in the second level of

the hierarchy so that the influence diagram is a complete representation of the

decision model that contains all information necessary for analysis.

e) The analysis of influence diagrams has been automated. This automation is

greatly facilitated by the symbolic computation and data structure properties of

the Lisp programming language.

All of the advantages of the influence diagram discussed above can be traced to a

coupling together of these five fundamental elements.

Two alternative languages for modeling decision problems are trees and the

probability calculus. Trees have an advantage in that they can easily represent and

exploit asymmetry which influence diagrams cannot. On the other hand, influence

diagrams are more effective than trees in representing and exploiting conditional

independence among model variables. Trees and influence diagrams are different

languages and tend to focus the modeling activity on different aspects of the problem.

Trees focus attention on the timing aspects of the events in the model. They are useful

for considering scenarios of events. Influence diagrams focus attention on the

interrelationships between the variables in the problem, the dependency and information

10

-'•

structure of the problem. As discussed previously in this section this structure is often

the most critical aspect of a model.

The probability calculus is of course much more general than influence diagrams. 67 .,,

An example is the fact that influence diagrams cannot represent continuous time models

which are quite common (continuous time stochastic control). Also, analytical results

can be obtained for models formulated in the probability calculus. The influence

diagram can provide only numerical solutions. However, for problems with even

moderately complex dependency and information structures, formulation and analysis

using only the probability calculus becomes very difficult and trees or influence

diagrams become necessary.

These advantages of influence diagrams motivated the attempt to apply influence

diagrams to the modeling of a very important class of decision problems, decision .

processes. Decision processes are introduced in the following section.

1.2 DECISION PROCESSES

Most of the decision processes encountered in both theory and practice are Markov

decision processes (MDPs). An effective way to define an MDP is by use of an

influence diagram. The influence diagram for the MDP is shown in Fig. 1.4. This

diagram represents a four stage, finite horizon MDP (infinite horizon MDPs are not

uncommon). Note that each stage has associated with it a random variable (the state

variable), a decision variable and a deterministic expected stage reward. At each stage

the process is in some state x(k) and decision d(k) must be made. The arc from x(k) to

d(k) indicates that the decision maker has available the outcome of x(k) before making "

decision d(k). The decision maker will receive reward r(k) based on the current state

x(k) and the alternative chosen for d(k). The next state of the process, x(k+l), is a

random variable conditioned on the current state and decision, x(k) and d(k). The value

K r

' . -. , -,

function of the problem is a deterministic function of the stage rewards. It is usually

their sum but sometimes their product.

I..:.

II

Figure 1.4. Influence diagram representation of an MDP.

For deterministic decision processes, the properties of the maximization operator

allow decision processes with a broad range of separable value functions to be solved

using dyn:,mic programming. However, for stochastic decision processes, the

properties of the expectation operator must be considered. These properties are much

more restrictive than those for maximization. Thus, dynamic programming can only be

applied to those stochastic decision processes that have a value function that is a sum or

a product. Since in this thesis we only deal with stochastic decision processes, we use

separable to describe value functions that are either sums or products. Note that the

addends or factors in separable value functions might themselves be separable.

An important concept in the consideration of MDPs is the Markov assumption.

This assumption is that given any x(k) the future evolution of the process is

independent of the past. Considering the presence of the implicit arcs in the influence

diagram of the MDP in Fig. 1.4 (e.g., d(3) actually has predecessors x(O), d(O), x(l),

12

..

d(l), x(2), d(2) and x(3)), it is not clear that the Markov assumption holds. However,

it is known that to find the optimal alternative for d(3) only v(3) is maximized and not

V. Since v(3) is independent of all the variables that precede x(3) given x(3), the -

outcomes of these variables can be ignored when making decision d(3). Extending this

line of reasoning all implicit arcs in the diagram in Fig. 1.4 can be ignored. Now, it is

clear that all paths from variables preceding x(k) to variables succeding x(k) go through

x(k), that is, given the present, the future is independent of the past.

A generalization of the MDP model is the partially observable Markov decision

process (POMDP). The POMDP model is a more realistic model than the MDP model

for many decision problems. As an influence diagram, a finite stage POMDP is

represented as in Fig. 1.5.

V

Figure 1.5. The influence diagram of the partially observable Markov
decision process.

The distinguishing feature of the POMDP is the fact that the realization of the state

variable x(k) is unknowkn to the decision maker when decision d(k) must be made.

13

I[

Instead, the decision maker only knows the outcome of the observation variable z(k)

which is probabilistically dependent on x(k). As before, the next state x(k+ 1) depends -

on x(k) and d(k). Note that the observation process is under the control of the decision

maker. The expected stage reward depends on the current state and decision plus the

observation and state at k+ 1. Once again the value function is a deterministic function

of the stage rewards and is usually a sum or a product.

There are several other common variations to the standard MDP structure. A

common example is if the state variable at k+ 1 depends not only on the state and

decision at k but also on state and decision variables in stages preceding k. This is

called time lag. An instance of a decision process with time lag is illustrated by the

influence diagram in Fig. 1.6.

Figure. 1.6. Influence diagram of a decision process with time lag.

Other decision processs have a unique structure that is notably different than an

MDP. Such a decision process from an actual application (NASA's Voyager Mars

project) is shown as an i ,fluence diagram in Fig. 1.7.

14

_.- .

A....

Figure 1.7. Influence diagram of a decision process from the Voyager
Mars decision analysis.

The previous paragraphs indicate the broad scope of the class of decision problems

that come under the heading decision processes. Rather than state a formal definition

of decision processes, the defining characteristics of such models will be stated.

A decision process is a decision problem in which the dominant structure is a

sequence of similar stages indexed with a countable set, usually discrete time.

Associated with each stage is a set of decision variables. The decision variables in the

entire decision process are ordered. This ordering has the feature that all decisions

associated with stage t-) follow all decisions asociated with stage t1 whenever t2 > t1 .

Also, associated with each stage is a set of random variables. Finally, associated with

each stage is a set of rewards, deterministic functions of the other stage variables. The

dependency and information structure between stages may be stage dependent. The

probability distributiuns of the random variables may also be stage dependent. The

outcome of the random variables and the action space of the decision variables are

15

r
- * .

1 5 . , * ...- .. .x";

usually discrete and often finite. They can in general be uncountable. The objective

function of the problem is a deterministic function of the stage rewards.

The scope of this thesis is restricted to discrete time decision processes with finite .

'- state and action spaces.

PZ.

1.3 GOAL OF THIS RESEARCH

The past two years has seen the integration of two powerful ideas, symbolic

computation and influence diagrams. As a result, influence diagrams can now not only

be used as a language for formulating decision problems, but also as a language for

automating the analysis of decision problems on the computer. This is one of the

foundation elements of the advantages discussed in Section 1.1. This thesis research

was motivated by the potential of applying these advantages to the formulation and

analysis of decision processes.

The key property of stochastic decision processes is that the value function is the

sum or product of the stage rewards; that is, the value function is separable. This

property is the key to the efficient solution of decision processes and is the basis of

stochastic dynamic programming. In the single value node influence diagram the

separable nature of the value function is hidden inside the value node and cannot be

exploited. New constructs must be developed so that the separable nature of a value

function can be represented in the influence diagram of a decision problem. Influence

diagram reductions and algorithms can then be written that utilize this new structure.

This will allow decision processes to be efficiently solved within the influence diagram

framework.

In short, the goal of this thesis is to extend influence diagram theory so that

decision processes can be effectively formulated and analyzed as influence diagrams.

.%*~

16

.'-.-.-.....",..*.,. . :_.' -. , .2-r. v . . - .. . : . --- i. .-...- .. . -'.. .?- :......,...

- - " Nsr - V% -or - j W -Y V
i

U . IN - X -a'wr-~ru-,, -- -

1.4 SUMMARY OF RESULTS

The concept of a subvalue node has been added to influence diagram theory. This

allows the separable nature of a value function to be explicitly represented in the *

influence diagram. New influence diagram reductions have been developed that exploit

this additional structure. Also, an algorithm has been developed to solve influence

diagrams with subvalue nodes.

This extension of influence diagram theory to include subvalue nodes is significant

for several reasons. From the decision analysis perspective the subvalue node concept

allows a full and simple exploitation of all separability in the value function of a

decision model. Influence diagram theory previous to this thesis allowed exploitation

of the conditional independence in a decision model. The combination of these two

features allows any efficiency that could be gained by applying coalescence to a tree

representation of a decision model to be also gained in a influence diagram

representation of the model.

Importantly, the fact that influence diagrams with subvalue nodes allow easy

exploitation of additive and multiplicative separability, means that algorithms can be

designed that automatically recognize the opportunity for applying the principle of

optimality when solving influence diagrams. This substantially increases the

accessibility of dynamic programming to the analyst. For example, consider the MDP

with random rewards in Fig. 1.8. (this example is discussed in detail in Section 5.1).

The algorithm developed in this thesis solves this problem using a sequence of

operations that correspond precisely to solving the problem by using dynamic

programming. However, by using the influence diagram to solve the problem, the user
V.

did not have to know anything about dynamic programming or NIDPs. The only

requirement put upon the user was to appropriately represent the fact that the value

function is either a sum or product of the random stage rewards.

17

£ *.,

,.*

Figure 1.8. An MOP with random rewards.

From the decision process perspective, modeling these problems as influence

diagrams allows simple formulation and solution of nonstandard decision processes.

Also, it allows the conditional independence among the variables in a stage and between

the stages to be exploited. This results in significant savings in terms of data storage

requirements and computational complexity in solving certain decision processs.

The influence diagram representation of the standard MDP is shown in Fig. 1.4.

Without usin- influence diagrams it is difficult to automate the application of dynamic

programming to problems that do not fit this standard MIDP format. Now, the

influence diagramn facilitates the automation of alg.1orithms that can easily solve problems

with more complex dependency and information structures than that of the standard

MDP. It allows us to break up the single state variable of the standard MDP into its

separate variables and take advantage of the conditional independence among them.

This can result in significant efficiencies. For the three stage decision process shown in

Fig. 1.9 (this example is discussed in detail in Section 5.4) the ability to break up the

single state variable into the three variables d(k), f(k) and s(k) decreases both the data

18

S ~........S.:o

storage requirements and computational complexity of solving the problem by two

orders of magnitude.

fo fl

so S1 s2

Figure 1.9. Three stage decision process with the state variable broken
up into its component variables.

Also, for the same three stage decision process consider the presence of another

variable in the model that destroys its nice structure as illustrated in Fig. 1. 10. An

important strength of the theory and algorithm developed in this thesis is that it allows

decision processes with complications such as this to be routinely solved on the

computer.

19

b--

to f2

Figure 1.10. A decision process with an added variable.

Finally, the influence diagram wvith subvalue nodes provides an insightful

frame%%ork for considering many of the critical characteristics of various decision

processes.

1.5 RELATED WORK

Other graphical techniques have been developed for assisting in the analysis of dynamic

systems. T1he most important example is structural modeling. T1his modeling language

and technique as introduced by Forrester [Fl 1. Since then it has been broadly applied

to the analsysis of large scale social, political and economic systems. A structural model

consists (if a collection of elements and the pairN% ise relationships betwecen those

elements. Mudels are represented as directed graphs wvith labeled arcs. The emphasis

20

S- .!.-.

. "2t

h, . . .

is on the qualitative and structural aspects of the problem and identifying the existence

and strength of relationships between the elements in the model. The analysis

technique used on structural models is almost exclusively simulation. A host of :F

software tools exist for simulating structural models as well as for providing results on

structural properties of the model.

Influence diagrams with the extensions developed in this thesis also capture the

structural and qualitative aspects of a dynamic system. They do not capture these

aspects, though, quite as intuitively as structural models for most decision makers.

This small loss in intuition is due to the mathematically precise definition of the arcs and

nodes in an influence diagram. It is this precise mathematical definition, however, that

F.' is at the foundation of the powerful advantages of influence diagrams as detailed in the

first section of this chapter. Quantitative analysis in influence diagrams benefits from a

coupling of graphical and mathematical techniques. Analysis is performed within the

same framework that captures the qualitative and structural aspects of the problem. On

the other hand, quantitative analysis can be performed on the mathematical component

of a structural model only after it has been extracted from the overall structural model.

Also, optimization can be performed in the influence diagram model of the problem. "7

Structural models do not contain the concept of a decision variable as separate from

chance or deterministic variables and no theory exists for optimization within the

structural modeling framework.

Yamada has used structural models in the analysis of dynamic descriptor variable

systems [Y I]. A mathematically precise graphical representation is used to determine

the structural controllability of the dynamic descriptor system. If in the analysis,

attention is restricted to a subset of all influence diagrams, some of Yamada's main

graphical results can be developed using influence diagrams instead of the graphs used

by Yamada. These influence diagram representations have the added advantage of

21

containing more information than Yamada's graphs. This additional information is in

fact relevant to the critical assumptions in the theory of structural systems. Thus it

appears that it might be fruitful to investigate the application of influence diagrams to

structural controllability theory.

The greatest obstacle in applying the theoretical power of dynamic programming to

the solution of sequential decision problems is the high dimensionality of the required

computations for even some relatively simple problems. The main current of research

in dynamic programming at present is directed at this problem. The approaches to

solving this problem fall into three major categories: decomposition, analysis and

approximation.

The most active area of research is decomposition. The sequential decision

problem is decomposed into a set of subproblems and a mechanism is constructed to

coordinate among the subproblems. The overall problem is then solved iteratively by

solving each of the subproblems independently, coordinating these partial solutions

through the exchange of information between the subproblems, again solving each

subproblem and so forth. The problem can be decomposed in many different ways

including by stage [1341, by partitioning into subsystems [Si11, [K , by partitioning the

state space [1321 or by decomposing the linear program resulting from applying

dynamic programming to a Markov decision process [DlI].

The analytical approach involves attempting to solve the original decision problem

by not using dynamic programming at all. Instead a stochastic version of the familiar

maximum principle of deterministic optimal control is applied to the problem [H 1] The

* approximating approach involves either an approximation of the state space [1-2] or an

approximation to the optimal policy as in adaptive control [721. T"here are also

algorithms that exploit the special mathematical structure of specific classes of

22

.*7

problems. An example of this is the algorithm of Sondik and Smallwood for the

solution of partially observable Markov decision processes [S4].

The subvalue node influence diagram developed in this thesis supports a kind of
41

decomposition. The state variable of an MDP is usually a vector of random variables.

The influence diagram with subvalue nodes allows the analyst to treat the elements of

this vector as separate variables. This allows the conditional independence between .

these variables to be exploited, resulting in significant savings for some problems in .

data storage requirements and computational complexity.

Solving a decision problem represented as an influence diagram can be looked at as

removing all the chance and decision nodes by expectation and maximization

respectively. The computational resources required to solve the decision problem are

extremely sensitive to the order in which the chance and decision nodes are removed

(note that the order is partially specified by the information structure of the problem).

There is ongoing research by Ezawa [ElI] into the problem of developing algorithms

that produce the optimal node removal ordering. Because of the repetitive structure of

decision processes it is usually straightforward to find a sufficiently good ordering of

node removals for these problems. However, at some point it might be fruitful to apply S

Ezawa's work to influence diagrams with subvalue nodes.

Until recently, analysis of influence diagrams was restricted to the class of decision

problems whose chance and decision variables had finite outcome and action spaces.

The class of problems for which influence diagram analysis is possible has recently

been expanded to include those whose random and decision variables have outcome

and alternative spaces equal to the real numbers with all chance variables being

normally distributed [S31. Also, the value function must be quadratic. This work isF
significant in that it allows a large class of stochastic control and stochastic filtering

problems to be formulated and analyzed in terms of influence diagrams. To the

23

.". ,.

i

present, this work does not explicitly represent the separable nature of the value

function. The benefits of subvalue nodes for these normal influence diagrams should

be investigated. . ,,

Influence diagram theory has been extended to include subvalue nodes. This I

allows representation and efficient analysis of decision problems with separable value

functions. Chapter 2 develops the subvalue node concept. Chapter 3 discusses the

issues involved in solving influence diagrams with subvalue nodes. Chapter 4 -1-2.

examines the concepts of coalescence and the principle of optimality in decision

problems and how they relate to influence diagrams. Finally, Chapter 5 presents

several applications.

NOTES AND REFERENCES

Introduction. The seminal works on decision analysis include a collection of papers

edited by Howard and Matheson [116], a book by Pratt, Raiffa and Schlaifer [P11 and a

book by Raiffa [R]. The collection edited by Howard and Matheson contains the

references for the listed examples: seeding of hurricanes [H7], Voyager Mars [M2],

synthetic fuels program [TI] and research and development [B51.

Section 1.1. Influence diagrams were first introduced in a report by Miller, et al

[M31. The best references are papers by Shachter [S2] and Howard and Matheson

[1141 and a thesis by Olmsted [011. The paper by Shachter contains the first algorithm

for solving decision problems as influence diagrams. A well documented application of -'I
influence diagrams is the thesis by Claudio [C1]. The definition of an influence

diagram presented here is due to Shachter [S2] which contains a precise definition.

24

%"..
.............................. %~-:~-:2K--: :

Section 1.2. An excellent review of the literature on the development of Markov

decision process theory is in Heyman and Sobel [H2]. The most readable introduction
S,

to Markov decision processes and dynamic programming is the book by Howard [H3].

A superb contemporary treatment of the same subject is the book by Bertsekas [B31. A -

review of the literature on partially observable Markov decision processes is in

Monohan [M4]. The state of the art algorithm for solving POM)Ps was developed by

Sondik and Smallwood [S4].
Section 1.5. A survery of structural modeling is Lendaris [L]. Ile remainder of.-'"

the references for Section 1.5 are contained in the text of the section. III]

I :

25

.-i7

Chapter 2

The Subvalue Node

~.o

The current chapter motivates the introduction of subvalue nodes into influence

diagrams. The special properties of the expectation and maximization operators that

make subvalue nodes useful are then discussed in terms of the influence diagram. This

discussion then serves as the basis for defining allowable subvalue node structures. A

set of reductions are developed for manipulating influence diagrams that take advantage

of this new subvalue structure. An example is then solved using the subvalue node

structure and reductions. Finally, automatic introduction of subvalue nodes is

presented.

2.1 MOTIVATION FOR SUBVALUE NODES

This research began with the attempt to perform dynamic programming on a Markov

decision process (MDP) in an influence diagram framework. This was not possible

with the single value node influence diagram. To make it possible, it was natural to

introduce the subvalue node as a new influence diagram construct. To demonstrate the

effectiveness of this concept the MDP example is presented.

26
2 6 i"-.

Consider the following MDP represented in the probability calculus.

Objective function

V = r0(x(0),d(0)) + rl(x(1),d(1)) + r2(x(2),d(2)) + v3(x(3))

with joint probability distribution expansion

P{x(3)lx(2),d(2)} * P{x(2)x(1),d(1)1 • P{x(1)Jx(0),d(0)} • P{x(0)}

and information structure

d(2)J{x(2),d(1),x(I),d(0),x(0)}

d(I)l { x(1),d(O),x(O)} .

d(0)Ix(0) '"

where dIX means that the outcomes of the variables in X are known to the decision

maker when decision d must be made. The graph of the influence diagram of this MDP

is shown in Fig. 2.1. Note the multiple value nodes. These are the subvalue nodes.

The subvalue nodes represent expected values. They contain a conditional expectation

that is a component in the overall value function of the decision process. They are

similar in purpose and treatment to the value node in the single value node influence

diagram. There are two special classes of subvalue nodes, sum nodes and product

nodes. Sum nodes, (e.g. v(O), v(l) and v(2) in Fig. 2.1) are special subvalue nodes

with their functions being the sum of their predecessors. Product nodes (which do not

appear in Fig. 2.1) are subvalue nodes with their function being the product of their

predecessors. We use V to designate the set of all subvalue nodes in an influence

diagram. This set includes the traditional value -)ode.

27

2 7 , - ~~* >, . . ~ A 4..,

e'%

Figure 2.1. Influence diagram for an MDP.

The standard solution technique for MIDPs is dynamic programming. In dynamic --

programming v(2), v(1) and v(O) are found recursively. The maximum expected value

for the MDP is v(O). In more detail, the first step is to find v(2). We have from

standard dynamic programming

v(2) Md(2)Ix(2) {r(2) + Ex(3)lx(2),d(2) [v(3)]}

The Md(2)lx(2) operator is the maximization operator with respect to d(2) with the

outcome of x(2) being known to the decision maker. Ex(3)lx(2),d(2) is the conditional

expectation operator with respect to x(3) conditioned on x(2) and d(2). Consider this

first step of the dynamic programming algorithm in terms of the influence diagram in

Fig. 2.1 and Fig. 2.2a-c.

First, expectation is taken over v(3) with respect to x(3). Variable v(3) inherits the ,

conditioning of x(3) on d(2) and x(2). This expectation corresponds to removing x(3) -"-

into v(3) in the influence diagram as illustrated in Fig. 2.2a. Next, r(2) and v(3) are

28

-4Y . - ii ~ . I .K' '- .;- . - ~ , i.-.- ;.2. "_:- "- - ." -: -. .. "- "," --'-

added together. This corresponds in the influence diagram to removing r(2) and v(3)

into v(2) as in Fig. 2.2b. Now the maximization of this sum over d(2) conditioned

only on x(2) is performed. In the influence diagram d(2) is removed into v(2). This ,_

produces the influence diagram in Fig 2.2c which shows v(2) conditioned on x(2)

only. This is exactly what we wanted and so the first step of the dynamic

programming algorithm is complete.

(a) The MDP after expectation of v(3) with respect to x(3).

2 9-

293

rA°.

() The) MDxfe umn (2)nv()

Fiue... n te f.h.ynmc-rgrmig-lortm

IF

d(O~. •I d(2

• (c~~~) The MDP after smxmingatio nd v().wt epc od2.?: ' :

F"~ (c Tig he 2.. Oneftep o x iztion ofynam ith o respect tlortm .d(2).

! r,

-~7 7. 7-.7 7. T:. F. T- V..

The important thing going on is that the value function has been decomposed and

the maximiization and expectation operations necessary to solve the problem by

dynamic programming are being carried out over components of the value function

instead of the entire function. Single value node influence diagram theory was not rich

enough to capture this. It is necessary to decompose the single value node into a set of

subvalue nodes and develop the influence diagram reductions necessary to exploit this

new structure. This is the subject of this thesis.

These operations of taking a maximidzation or expectation over only a component of

the value function are exploiting the special properties of the maximization and

expectation operators when applied to arguments which are sums or products.

Remember that we call a value function that is a sum or product separable and that the

arguments of the separable value function might themselves be separable. We refer to

the expectation and maximization properties that pertain to separable value functions as

their separability properties. These separability properties will be covered in detail in

the next section. They are important in that they allow maximizations and expectations 4

to be performed over only a component of the value function instez d of the entire

1C. function under certain conditions. This significantly reduces the work necessary to

solve a decision problem.

In order to use these properties in influence diagrams, it is necessary to represent

the separable nature of the value function. A natural technique for doing this that is

consistent with influence diagram theory is to use sum and product nodes. The last L
example illustrated the effectiveness of this technique. This places the separability

information in the graph of the influence diagram instead of in the data frame of the

influence diagram. Thus, it is possible to determine what expectation or maximization IF

operations can be performed at each step by examining only the topology of the graph.

This is a desirable property of the single value node influence diagram that allows

31

graph theory techniques to be used in analyzing influence diagrams. The subvalue

node structure provides the foundation for influence diagram reductions that exploit the

separability properties of the expectation and maximization operators. The subvalue

node structure together with reductions to take advantage of it will make possible

significant improvements in efficiency in solving decision problems with separable

value functions as influence diagrams. The next section presents these separability

properties using influence diagrams with subvalue nodes while at the same time

motivating the types of subvalue node structures that are useful.

2.2 SEPARABILITY PROPERTIES AND SUBVALUE NODE

STRUCTURES

As motivated in the last section, influence diagram structures are needed that support

taking advantage of the separability properties of the expectation and maximization

operators in order to make the solving of certain decision problems as influence

diagrams more efficient. In this section these expectation and maximization properties

are presented in terms of the basic subvalue node concepts introduced in the last

section. Discussing these properties in terms of the subvalue node influence diagram

motivates the development of the remaining necessary subvalue node structure.

For this thesis we assume that there are no deterministic nodes in the influence

diagram, only chance, decision and subvalue nodes. This costs us very little. A

deterministic node is actually just a special case of a chance node.

The first useful property of the expectation operator is that the expectation of a sum

is equal to the sum of the expectations. The example in Fig. 2.3 should help make the

conditions of the theorem clear. Formally, we have the following.

32

.. , -...-,

Property 1. Given the set of subvalue nodes R = r u {rO, r1, rN } such that r -1

is a sum node, C(r) = {ro, ri, ... rN j} and S(ri) = r for each ri in

{ro, rl, rN}, then applying ExIC(x) to R is equivalent to applying ExIC(x) to -"
each ri in fro, r1 ., rN}1.

Proof. Applying ExjC(x) to the set R of subvalue nodes is equivalent to

ExIC(x) [r(r0, r,... , rN)]

= ExIC(x) [-i ON ril

because r is a sum node
= 7i = O,N ExIC(x) [ri]

because of the linearity of expectation operator. This is equivalent to applying ExlC(x)

to each subvalue node ri in {r0, r1, rN} ."

r r".

:,.:.-

Figure 2.3. The set of subvalue nodes R in Property 1.

A similar but more restrictive property holds for product nodes. If only one

predecessor of a product node has x as a functional predecessor then the ExIC(x)

operator applied at the product node can propagate backwards through the graph to that

single predecessor.

S.'-

33 -

- - ... ~~~~.#* .~~ .- - -.

Property 2. Given the set of subvalue nodes R =r u.. {rO, rj,, rN4} and the

chance node x such that r is a product node, C(r) ={ro, rl,, rN1, S(ri) = r

for each ri in fro, r1,., rj arnd that x is not a functional predecessor of any ri

in fro, r1,., rN-l I then applying ExIC(x) to R is equivalent to applying

ExIC(x) to ir4.

Proof. Applying EXIC(x) to the set R of subvalue nodes is equivalent to

ExIC(x) [r(rO, rl, . . . , rp4)j

ExIC(x) 1Hr = O,N riJ

because r is a product node

=ExIC(x) [(Hli 0,N-1I ri) *rNI

(F1i = O),N-1I ri) -Expcx) [rNj

because x is not a functional predecessor of any ri in {ro, rl, . . . ,rN-jI). This last

term is equivalent to applying Expcx) to subvalue node rN.0

7-7 7

34

* - of r0 and rl- r-.-

.- ..'.:

oe at ar*rsetd.

Firse .. ape ifo Pr dl~operat r , ex petooe a produc andnye

predecessor of the sum node has a directed path from d then the Md,:I(d) operator can..,

propagate from the sum node backwards through the subvalue graph to the single I,..

predecessor. :::

Property 3. Given the set of subvalue nodes R = r U {r0 , r1, rN} and-.-.

decision node d such that r is a sum node, C(r) = {r0 , r1,.. •, rN}, S(ri) = r for -

each ri in {r0 , rI, ... , rN} and d W(ri) for any ri in {r0, r1, , rNl then

applying Mdld) to R is equivalent to applying Mdll(d) to rN. .

r;

Proof. Applying NMdl(d) to the set R of subvalue nodes is equivalent to "

rdId r r0 rl. . .N l.-,.

-.V

= l~1dll(d) [Ei = O,N ri [J

35 ::::

rr

-° * * . d * . -. • -.- .

:,7........,i..,. ,2 .,:..,,-.. 4...-.-..-. Example ...:-.-....... -.. ..fo.... .Pr..-..r-t. 2,. ex e t to v ra p o u tn d .. .-.. .-.-.-.......-

. ",l .' :' ,.These are the only three properties,. of the expect.ation- operator that are_ "necessary for' -', ' . '." _:--. ' L","-' t .'. t ' *'-. -- - ''

because r is a sum node

= Md)I(d) [(Fi =0,N-1 ri) + rN] "

= (Xi = 0,N-1 ri) + MdjI(d) [rN]

because d E W(ri) for any ri in {r0 , r1, I and so these ri's do not vary with

d. This last term is equivalent to applying Mdli(d) to rN.-

d

• ..-.

Figure 2.5. Example for Property 3, maximization over a sum node.

The same property holds for the case in which V is a product node instead of a sum

node. In this case it is necessary that the predecessors of r are always nonnegative.

Property 4. Given the set of subvalue nodes R = r u {ro, r, ... , rN} and

decision node d such that r is a product node, C(r) = {r0 , r1,. . . , rN}, S(ri) = r

and ri >0 for each ri in {ro, ri,. .. rN} and d i W(ri) for any ri in

{ro, r1,.. . r, -1 then applying Mdjl(d) to R is equivalent to applying MdjI(d)

to rN.

r

36
• ,

a..' ; a-.

___________________ . .

Proof. Applying Mdi(d) to the set R of subvalue nodes is equivalent to

SProf ppyMdnI(d) tr(r0' rls .. a. , rN)]'

MdI(d) [Fi = 0,N ri]

because r is a product node

= MdjL(d) [(Ii = O,N-1 ri) ° rNI

= (FIi = 0,N-1 ri) "MdII(d) [rNI

because d e W(ri) for any ri in {ro, rl, . rN-1 } and so these ri's do not vary with

d. This last term is equivalent to applying MdII(d) to rN..

The basic subvalue node ideas that have been developed so far (namely subvalue

nodes, some of which are sum nodes and some of which are product nodes) were

enough to represent the relevant properties of the expectation and maximization

operators in influence diagrams. For purposes of subvalue node influence diagram

reductions and the subvalue node influence diagram algorithm to be developed later, it

is convenient to restrict the way subvalue nodes are allowed to be used in the influence

diagram.

Note that the above properties can be applied recursively. Thus in the influence

diagram in Fig. 2.6, the Md;y operator can propagate from V to w then to s. Likewise

the Exly operator can propagate from V to w then to r. One can see that fairly complex

subvalue structures could thus be attacked with the four properties that have been

developed.

7,

.

".. . ..

p.
9.-

Y |d
S r-

4 .

U W

Figure 2.6. A subvalue node influence diagram.

The subvalue structure comes from breaking up the value node into a graph of

subvalue nodes. This graph is a subgraph of the influence diagram. Each subvalue

node in this graph is allowed have only one successor, restricting the subvalue node

graph to be a tree. This restriction is rather artificial but is not a serious issue in

formulation and greatly simplifies development of the subvalue node influence diagram

reductions and algorithm.

Now, an expectation or maximization operator can never propagate backwardsLFL
through the graph past any node other than a sum or product node. Therefore if a sum

or product node does not have a sum or product node successor, the sum or product

nature of the node cannot be used. Therefore it never makes sense to have a sum or

product node that does not have a sum or product node successor. Extending this

reasoning, it is clear that every sum and product node should have a path to the value

38

38 o

node such that every node on this path including the value node is either a sum or a

product node.

Similarly, for any subvalue node that is not a sum or product node to be useful is

must have a path to the value node such that every node on the path including the value

node is either a sum node or product node. If this is not the case then no expectation or

maximization operator can ever be applied to the subvalue node so it might as well be a

normal deterministic node or not introduced into the influence diagram at all.

The preceding discussion can be summarized in the following rules.II
Rule 1. Each subvalue node except the value node has one and only one successor.

The value node has no successors.

Rule 2. The successor of each subvalue node is either a sum node or a product node.

Note that these two rules force the subvalue structure to be a tree. The "root" will

be the value node and the "leaves" will be subvalue nodes that are neither sum or

product nodes. An example of a subvalue node influence diagram that satisfies the

above two rules is again Fig. 2.6. We add one more restriction to simplify things

when maximizations are being performed on subvalue node influence diagrams that

contain product nodes.

Rule 3. A subvalue node influence diagram is not allowed to have all three of the

following properties: 17

a) contains product nodes

b) contains decision nodes

c) contains subvalue nodes that are not guaranteed to be always nonnegative. U

The subvalue node influence diagram thus provides the necessary structure to

represent the relevant sums and products in the value function. It has been shown that

39

this structure works well with the relevant properties of the expectation and

maximization operators. Next is is necessary to use these properties to develop

reductions for the influence diagram with subvalue nodes that will allow us to solve

decision problems.

2.3 REDUCTIONS FOR INFLUENCE DIAGRAMS WITH

SUBVALUE NODES

The idea of an influence diagram with subvalue nodes has been developed and its

usefulness has been suggested. Also, the special properties of the expectation and

maximization operators when applied to separable value functions have been discussed

in terms of the influence diagram.

In order to solve decision processes represented as influence diagrams with

subvalue nodes the following reductions are required:

1) arc reversal between chance nodes

2) chance node removal by summation

3) chance node removal by expectation

4) decision node removal by maximization

This section develops these reductions. Ai'c reversal does not involve the value

function in any way and so remains the same operation as in the influence diagram with

a single value node. Chance node removal by summation likewise does not involve the

value function and so is not effected by the subvalue nodes.

Removing a chance node into a subvalue node on the other hand is different than

removing a chance node into the value node in the single value node influence diagram.

An important difference is that when a chance node is a direct predecessor of a

subvalue node, it can be removed into that subvalue node by expectation under certain

conditions even though it has other successors. This is true even when some of these

40

r

&.. . .. ,.. - .-... ,.. -.. ,. . ., . _,-_ _ ,

removed) the chance node may still be in the diagram. An example of this is from

Markov decision processes (MDPs). The M DP is frequently formulated as in Fig.

2.7a. In this case it is common to simplify the stages by taking expectation of each

reward r(k) with respect to x(k+ 1). In the influence diagram this corresponds to

removing the x(k+1) to r(k) arcs resulting in the influence diagram in Fig. 2.7b.

S..

d(O)~. dd) (2

reovngth () t ~)a resutin r(2 teifenedar(3) ig .b .. 21

(a)

41

I r,
__

- . . ~ .~ ~ -.

- ,- .o .

,J.Z

(b)

Figure 2.7. Simplifying the stages of an MDP.

In general, the type of arc removal described above is useful for simplifying the

stages of a decision process whenever the stages are identical (a stationary decision

process). However, in this thesis (with the exception of the POMDP example) the

reduction developed for taking expectation with respect to chance nodes requires that . -.'

the chance node have only subvalue node successors. This reduction is formalized in

the following theorem, but first, the concept of a blocking product node must be

defined.

Definition. A blocking product node with respect to chance node x and subvalue

node r is a product node b with predecessors r1 and r2 such that r1 is on the

directed path from r to b and x is a functional predecessor of both r1 and r2.

The significance of this concept is illustrated in Fig. 2.8. Node b is a blocking

product node with respect to r and x. The operator ExIC(x) cannot propagate up the

42

. .. .

. n2,

I
subvalue node graph to r. It is blocked at b which is a function of x through two

predecessors.

p..'.

Figure 2.8. Subvalue node b is a blocking product node with respect to,.
nodes r and x.

Theorem 1 (Chance Node Removal). If x is a chance node in an influence

diagram, and

a) x directly precedes the set of subvalue nodes R f{r, r1 , r2, rN}

and nothig else

b) each directed path from an ri to the value node contains no blocking product

nodes with respect to x and ri,

then x may be removed from the influence diagram by expectation of each ri with

respect to x conditioned on the conditional predecessors of x. Each subvalue node

ri inherits the conditional predecessors of x.

Proof. For chance node removal we have

Cnew(V) Cold(V) \ x U C(x)

43

F,.-

77 .7 17 .. 111 M7 F~~ V~ 0. 1~ 1 . -O-q7 .

,-.. . .T-.W ' F .-~ 7

where Chew(V) and Cold(V) designate the new and old chance and decision node

predecessors of the set of subvalue nodes V. The set of subvalue nodes V represent

the optimal expected utility of the problem. The optimal expected utility after removing

x is given by '4

U new(Cnew(V)) = EVICnew(V) [V]

- ExICnew(V) [EVIX,Cnew(V) [V]]

by expectation expansion

= ExIC(x) [EVlx,Cnew(V) [V]]

= ExC(x) [EvIcOld(v) [VI]

This is equivalent to applying ExC(x) to the set of subvalue nodes V in the influence

diagram. We need to show that this is equivalent to applying ExIC(x) to each ri in R.

This is true if ExIC(x) can propagate backwards through the subvalue graph from the

value node to each ri in R and is inconsequential everywhere else. Because there are no

blocking product nodes on the directed paths from ri to the value node, ExIC(x) can

propagate to each ri in R by Properties I and 2. Now, x precedes each ri in R and

nothing else. Thus there is no directed path from x to any subvalue node not on a

directed path from some ri in R to the value node. Thus ExIC(x) is inconsequential at

any subvalue node not on one of the directed paths from an ri to the value node. a

The removal of a decision node in a subvalue node influence diagram is very

similar to the same operation in the single value node influence diagram. The only

difference is that the maximization is done only over one component of the value

function. U 1

44

i U

,,% Remember that per Rule 3 in Section 2.2 it is not valid to have an influence diagram

,, with product and decision nodes and subvalue nodes which are not always ...

nonnegative.

Theorem 2 (Decision Node Removal). If d is a decision node in an influence

diagram, and

a) d is a conditional predecessor of subvalue node s and has no other 'f

successors

b) all conditional predecessors of s, besides d, are informational predecessors

of d; that is, C(s) \ d is contained in I(d)

then d can be removed from the diagram by maximization over s.

Proof. We have

Chew(V) = Cold(V) \ d

The optimal expected utility after maximization overd is given by

unew (Cnew (V)) = MdjI(d) EVId,Cnew(V) [V]

= Mdji(d) Evcold(v) [V]

= Mdli(d) Uold (Cold (V))

This is equivalent to applying the Mdli(d) operator to the set of subvalue nodes V in

the influence diagram. Now, there is a single path from s to the value node. Also, s is

the only successor of d. Therefore by Properties 3 and 4 of Section 2.2 applying

Mdli(d) to the set V is equivalent to applying Mdjli(d) to s. From the conditions I(d) -

C(s) \ d. So, s depends only on variables known when decision d is made. Therefore,

the optimal expected utility after d is removed is represented by the set of subvalue ,- -

45

. .2..

nodes V with d removed into s by maximization of s over d. The optimal policy is

given by

d*(I(d)) <-- arg Mdli(d) [Uold (Cold (V))]..

Note that any elements of I(d) that are not elements of Cold(V)\d do not enter into

the maximization operation and can be ignored. We refer to the arcs from these nodes

to d as forgettable arcs.

These are the only influence diagram reductions necessary to develop an algorithm

to solve subvalue node influence diagrams. The following example demonstrates how -

the reductions can be used in solving a decision problem. The solution steps will be

presented in both influence diagrams and in the probability calculus. To simplify the

notation, if u is a subvalue node with conditional predecessors y, z we write <uly,z>

instead of Euly,z [u].

Figure 2.9. Influence diagram for the example.

. .

. i-ir

-.- - - -

I

The influence diagram for the example is shown in Fig 2.9. The first step is to take

conditional expectation of the value function with respect to x

Exly [<uly,z> + (<sld,y> * <rlx>)]

= Exly [<uly,z>] + Exly [(<sld,y> * <rlx>)]

= <uly,z> + (<sld,y> * Exly [<rx>])

= <uly,z> + (<sld,y>* <rly>)

In the influence diagram this corresponds to removing x into r resulting in the influence

diagram in Fig. 2.10.

YN

Figure 2.10. Node x removed by expectation of r with respect to x.

Now, the predecessor set of r is a subset of the predecessor set of s and they have

the same successor. It is therefore of no use to keep these two nodes. This fact will be -

explained in greater detail in Section 3.3. It is referred to as the subset rule. Functions

r and s are removed from the problem by multiplying them together

47

r

.. . .-- ,-- - . .5 ...

.- o. .~

<w<sjd,y>,<rjy>>
=<sld,y> • <rly> ...-

= <wld,y>.

In the influence diagram, nodes r and s are removed into w resulting in the influence ' '"

diagram in Fig.2.11.

y

d

z w

U

Figure 2.11. Subvalue nodes r and s are summed into w.

Now, the maximization of the value function over d can be performed

Mdjy [<ulz,y> + <wld,y>]

= <ulz,y> + Mdly [<wld,y>-

= <ulz,y> + <wld*,y>

which we write as <u[z,y> + <wly>. This results in the influence diagram in Fig.2.12

with d removed into w.

48

5 ,.. . . .

U

VV
Figure 2.12. Node d removed by maximization of w over d.

Again because of the subset rule, u and w should be added.

<VI<uly,z>,<wly>>
=<uly,z> + <wly>

=<Vly,z>

This produces the influence diagram in Fig. 2.1 3a with nodes w and u removed into V.

49

P 1 W O~ rip~ J. 1, i7 W': r- OF 3. .

0.'.

* . . .

y

zr

V

Figure 2.13. (a) Subvalue nodes u and w summed, (b) Expectation of V
with respect to y, (c) Expectation of V with respect to z.

Now, the expectation of V can be taken with respect to y and then z

Ez Eyjz <Vly,z>

= Ez <Viz>

. = ~<V> ...-

All nodes are now removed from the influence diagram except for the value node

V. It contains the maximum expected value of the problem. Decision node d, though

removed from the diagram, contains the optimal decision for d as a function of y.

Now, consider what efficiencies the subvalue nodes have provided in this example.

Assume that each chance node in the example has n outcomes and each decision node n

alternatives. If the example was solved with no subvalue nodes, the work required

would be on the order of n4 + n3 + 2n2 + n. If subvalue nodes were used but no

product nodes, then the order of the required work is reduced to n3 + 3n2 + n. If sum

., and product subvalue nodes are used the order of the required work is reduced further

to 5n" + n. ..t

50

2.4 AUTOMATIC INTRODUCTION OF SUBVALUE NODES '.

There are two cases when it would be helpful if the algorithm for solving subvalue

node influence diagrams had the ability to automatically introduce new subvalue nodes

into the influence diagram. The first case is when two subvalue nodes must be

removed into their common successor when that successor has other predecessors.

The second case is when the user has an influence diagram in which all separability of

the value function is not represented explicitly with subvalue nodes.

It is common in a subvalue node influence diagram to have a sum or product node

with more than two predecessors such as V in Fig. 2. 14a. It is also common in

solving subvalue node influence diagrams that two of the predecessors of such a sum

or product node need to be removed (that is, added or multiplied as the case may be).

In the figure r(2) and v(3) must be added before the maximization over d(2) can be

performed. One way to do this is to remove all the predecessors of V. But because V

has more than just the two predecessors r(2) and v(3) some separability of the value

function is being removed. This loss of separability is critical in some very common

problems as it is in this example. On the other hand, if the user had input the influence

diagram as in Fig. 2.14b then there would be no problem. Nodes r(2) and v(3) could

be summed by removing then into v(2). In fact, there is no reason that the algorithm

cannot introduce such nodes without assistance from the user. It is simple for the

algorithm to detect when introducing a node such as v(2) is necessary and simpler yet

to actually introduce it. This is formalized in the following theorem.

51

-
a--

(a)

.7,

(b)

Figure 2.14. Introducing a partial sum node in an MDP. 1

52

r

- ' .. * * * * - -"-. -"-,

Theorem (Automatic Introduction of Subvalue Nodes). If r is a sum or

product node with C(r) {r(1), r(2), ... , r(m), r(m+1), ... , r(n)} then a valid

reduction of the influence diagram is to introduce node s into the influence diagram F

such that s is of the same type as r (sum or product) with C(s) = {r(1), r(2),...

r(m)1. Node r remains the same type but C(r) becomes {s, r(m+l),..., r(n)}.

Proof. r = r(1) + (r2) +... +r(m) + r(m+l) +... + r(n)

s +r(m+l) +... + r(n)

where s r(l) + (r2) +. +r(m) 1:

Whenever it is necessary to remove a proper subset of the predecessors of a sum

node by addition, a new subvalue node should be introduced into the diagram to

represent this partial sum. Summing the appropriate predecessors will then be

performed by removing them into this new subvalue node. The parallel argument

holds for product nodes and their predecessors.

1",ere is another case when it is useful for the algorithm to introduce subvalue ,

nodes. This is the case in which the user does not represent all the separability in a

value function by using subvalue nodes. Take for example an MDP with random

rewards. The user might input this problem as the influence diagram in Fig. 2.15a.

The first step to solve the problem is to take expectation of the value function with

respect to r(2). However, if this is done directly then d(2) becomes a predecessor of

V. It will not be possible then to perform the maximization over d(2) until r(O) and r(l)

are removed. This however results in a single value node influence diagram and the

advantage of the separable value function has been lost. The resolution to this dilemma

is for the user to input the problem as in Fig. 2.15b with the expectation of random

variable r(2) represented explicitly as a subvalue node in the diagram.

53

I

(a)

Figure 2.15. An MOP with random rewards.

[n fact, in order to ensure that aUl separability of the value function can be taken

advantage of by the algorithm, there should be subvalue nodes in the influence diagram

to represent the expectations of r(O), r(1) and r(2). In general, for the same reason, all

sum and product nodes should have only subvalue node predecessors. io-wever, there

is no need for the user to be responsible for checking for this condition. The algorithm

54

I.

.....

. r , r~'.. ..-."--.-.-...

developed in this thesis preprocesses the subvalue structure to ensure that all sum and

product nodes have only subvalue node predecessors. Only subvalue nodes that are

not sum or product nodes are allowed to have chance and decision node predecessors. r. ,-.

Note that in the above problem, the influence diagram might have been input with

V as an ordinary value node instead of a sum or product node. If, however, the .J

function for V in the data frame of the influence diagram is in the proper algebraic

form, it is easy to write software that parses the user's value function and builds a

subvalue tree if possible. This has been implemented as part of the software developed

in this thesis on the Macintosh computer running ExperLisp. An example is given in

Section 5.1.

Note that this parsing and the subvalue structure checking described in the last

paragraph work together. If the function associated with the value node or a subvalue

node is a sum or product, then that subvalue node becomes a sum or product node as

appropriate and new subvalue nodes are introduced if necessary to ensure the new sum

or product node has only subvalue node predecessors Also, whenever a sum or

product node is found that does not have only subvalue node predecessors, new

subvalue nodes are introduced so that it does. The functions associated with these new

subvalue nodes are then checked for being sums or products.

Thus, the first step of the algorithm presented in Chapter 3 is to preprocess the

value structure of the influence diagram, generating and checking the subvalue structure

to ensure that all separability in the value function is appropriately represented. We

refer to this preprocessing as subvalue structure generation.

Blindly introducing subvalue nodes in this fashion never increases the size of the

largest operation required to solve the influence diagram and it usually decreases this

size. However, it may increase the number of operations required to solve the

influence diagram. Therefore, whether or not it is appropriate to perform this

55

,; .-. _ _.. .?. . . i -i .. .i •-" - .- .. '. - '. - . ---- • . . .

preprocessing depends on the problem. At this time, it is left to the user to decide

whether or not to use this preprocessing.

One final note is that the exponential of a sum and the logarithm of a product can be

treated as products and sums respectively by using the appropriate transformation. The .

software developed for this thesis can handle these cases.

In this chapter we have developed the necessary influence diagram structures and

reductions to represent and solve efficiently decision problems with separable value

functions. In Chapter 3 an algorithm will be presented to solve these subvalue node

influence diagrams.

NOTES AND REFERENCES

Section 2.3. The full set of reductions for single value node influence diagrams are

developed by Shachter in [S21.

56 9

I"I

3.1 INTRODUCTION

The previous chapter developed the influence diagram theory necessary for

representing and exploiting the sums and products in the value function of a decision

problem. This theory is based on introducing subvalue nodes as a new influence

diagram concept. An algorithm may now be developed to solve problems formulated

within this framework. This will allow the user to formulate and analyze decision

processes as influence diagrams, exploiting both the advantages of the influence

diagram and the efficiencies made possible by separable value functions.

Prior to this thesis, algorithms have been developed for solving single value node

influence diagrams. At each step these algorithms select one node in the influence

diagram for removal, then remove it from the diagram by either expectation or

maximization over the value node, applying Bayes rule (arc reversal), summation of

one chance node into another or by a combination of these operations. There are

heuristics for selecting thle best node to remove next. Techniques for determining the

optimal ordering of node removals are currently being researched. It is guaranteed that

57

-- . -. L.. -. z. .r -----------------'.:,-. ' - --"'] -. e-- --- r -r- ",.-- , v.xrru W " r y y V ~ ww ~ - -- -

N.7

there is always some node that is removable from the influence diagram. Thus,

because there are a finite number of nodes, it is guaranteed that the algorithm must

terminate after a finite number of steps and produce the solution.

The algorithm for solving subvalue node influence diagrams is very similar to these

algorithms. There are several differences though that need to be discussed before the

algorithm is presented.

First, there are several new operations in the subvalue node influence diagram.

Chance nodes and decision nodes can now be removed by expectation and

maximization respectively, away from the value node, into a member of the set of

subvalue nodes. Also, new subvalue nodes can be introduced into the influence

diagram in the course of the algorithm. The technique for selecting the node to remove

in each step must take advantage of these new operations.

Second, in the course of the algorithm all subvalue nodes except for the value node

must be removed. Should the removal of a subvalue node be considered along with the

removal of chance and decision nodes at each step of the algorithm? Or should they be L

treated differently?

Third, in a subvalue node influence diagram containing sum nodes, there is the

possibility for removing the dependency of certain subvalue nodes on a chance node

.- but not the dependency of other subvalue nodes on this chance node. Therefore, we

have an expectation with respect to a chance node in which the chance node is not ""',"

removed from the diagram. This was discussed in Section 2.3. This idea of removing

arcs instead of nodes is not useful unless we have the ability to represent the influence

diagram of a stationary decision process by an influence diagram representing a single

stage of that process (this is discussed in Chapter 6 as a future research area).

The purpose of this chapter is to develop an algorithm for solving subvalue node

influence diagrams. The next section introduces several preliminary concepts

58

necessary to understanding the development of the algorithm. The role of the subvalue

nodes in the algorithm is then discussed. It is then possible to present the algorithm

and to show that it always reduces a subvalue node influence diagram to the value

node, thus providing the optimal policy and maximum expected value of the decision

problem.

3.2 PRELIMINARIES

There are several rather specialized concepts that must be introduced in order to discuss

the development of the algorithm. Presenting these here will allow the ensuing

discussion to flow more smoothly. These concepts are: the cost of an influence

diagram reduction, subvalue node subtrees and immediate reverse dominators.

Cost of Reductions

Each chance node x has outcome space f2x.Each decision node d has alternative space

(n d . In this thesis f2x and Od are always finite. We use Ifij to denote the number of

outcomes or alternatives for node i.

Consider the removal of chance node x from the influence diagram in Fig. 3.1 by

expectation over the value node. Note that x is conditioned on z and y. The cost of %

removing x is

Cost(Ex[V]) = [x x nz x fly x Ow

=I ~xl" If~zj" Qfyl" 12w l -

where x denotes the cartesian product. This cost is a measure of the size of the

matrices required to remove x in a computer implementation of an influence diagram

solver. It is also a rough indication of the number of operations required. We use the

59

~ -* * ~ .- .- .*..~ ~ *.--

'- terms "size" and "cost" of an operation interchangeably in this thesis. Remembering

that C(x) denotes the conditioning variables for x (its direct predecessors) we have in

general

Cost(Ex[V]) = Hi~ e x U C(x) U C(V) Ifil.

Figure 3.1. Influence diagram for cost of expectation example.

Now, consider applying Bayes rule to reverse the arc from x to y in Fig. 3.2. The

cost of this arc reversal is

Cost(Revx,y) D. x 2y x Da x f 2cI

More generally we have

Cost(Revx,y) Hi El x U y U C(x) U C(y) IfiI

Figure 3.2. Influence diagram for cost of applying Bayes rule example.

60

," 'li

The cost of the operation of performing maximization over a subvalue node with

respect to a decision variable d is calculated much like the cost of an expectation.

However, in this case all predecessors of V are also predecessors of d. Also, any .,J.k

predecessors of d that are not predecessors of V can be ignored. Therefore, for the

general case we have

Cost(Md[V]) [Ti e d u l(d) tP2il

where I(d) denotes the direct predecessors of d. In the example in Fig. 3.3 the cost of

maximizing V over d would be

COst(Mdli(d)[V]) = I d I wy l Iwl

WI

Figure 3.3. Influence diagram for cost of maximization example.

Finally, if chance node x precedes chance node y and nothing else, x can be

removed from the diagram by summing x out of the x,y joint probability distribution.

Refering back to Fig. 3.2 we could sum out x, removing it from the diagram. This

operation has the same cost as reversing the x,y arc.

61

."r .

.- ,

. -4.

Subvalue Subtrees
".-

As discussed in Section 2.2 it is required that the subvalue structure of an influence 6

diagram be limited to a tree structure. Thus, sometimes we refer to the subvalue d .

structure as the subvalue tree. A subvalue subtree is defined to be a subtree in the *..-

.1.

subvalue tree consisting of a subvalue node and all of its subvalue node predecessors

(both direct and indirect). We refer to this subvalue subtree by its root node, that is the

subvalue node which succeeds all other subvalue nodes in the subtree. Thus in Fig.

3.4 we have subtree(w) which consists of w, r and s. Also, the subvalue tree itself is a
I

subvalue subtree. We thus have subtree(V), consisting of V, u, w, s and r.

Y[x

.- -'.

S'

,.-.:

Figure 3.4. Influence diagram for subvalue subtree definition.

Immediate Reverse Dominator

The reverse dominator of a node x in an influence diagram is a node, r, such that r is

on every path from x to the value node. The immediate reverse dominator of x is the

62

- .

reverse dominator that precedes all other reverse dominators of x. In the example in

Fig 3.4, s and w are reverse dominators of d while s is d's immediate reverse

dominator.

3.3 SUBVALUE NODES AND THE ALGORITHM

The subvalue nodes play the role in solving influence diagrams of reducing the size of

the solution operations. To reduce this size as much as possible, the subvalue nodes

must be introduced into the diagram and removed at the appropriate step in the solution

process. In this section we briefly discuss when the subvalue nodes should be

introduced then discuss in some detail when they should be removed.

Introducing Subvalue Nodes

Automatic introduction of subvalue nodes was discussed in detail in Section 2.4.

There are two cases when subvalue nodes will be introduced into the diagram by the

algorithm, when removing subvalue nodes into a common successor and when parsing

the value function, that is subvalue structure genertion.

For the purposes of the algorithm, it is only important to note that a subvalue node

is introduced in the first case only in order to create a node that represents the sum or

product of two or more subvalue nodes. These two or more subvalue nodes are

always added or multiplied together immediately following the introduction of the new

subvalue node. Thus in this case, a subvalue node is never introduced except for the

purpose of removing two or more other subvalue nodes into it. For example consider

the MDP influence diagram in Fig. 2.14. Subvalue node v(2) is only introduced in r
order to remove r(2) and v(3). Thus, except for subvalue structure generation, any

63

S.. . . .

I

subvalue introduction results in a net effect of at least one node being from the

diagram.

The other point in the algorithm in which subvalue nodes are introduced by the

algorithm is in subvalue structure generation. This is performed as a preprocessing

step of the algorithm. Its purpose is to parse the value function and build a subvalue
I;-

tree if possible based on this parsing. For the purposes of the algorithm we only need

to be sure that no more than a finite number of subvalue nodes are introduced during

this preprocessing.

Under what circumstances does subvalue structure generation introduce a new

subvalue node into the diagram? First, a subvalue node might be found in the diagram

which is not a sum or product node but represents a deterministic function that is a sum

or a product. The subvalue structure generation program will change such a subvalue

node to a sum or product node as appropriate and introduce new subvalue nodes so that

all direct predecessors of the new sum or product node are subvalue nodes. Each of

these predecessors represent an argument to the sum or product node. Second, if a

sum or product node is found in the diagram such that all of its predecessors are not

subvalue nodes, subvalue structure generation will introduce new subvalue nodes to

make sure this is true. Section 2.4 discusses these operations in more detail. We can

see that subvalue structure generation only introduces a new subvalue node into the

diagram when it finds an argument to a sum or product node that is not a subvalue

node. Therefore, as long as the value function has a finite number of sums and

products each with a finite number of arguments and contains no recursion, then we are . -

guaranteed that subvalue structure generation introduces only a finite number of

subvalue nodes. We assume that these conditions on the value function are always

satisfied.

64
r.%

__ r_ !

• ? 'i- . "" - '. '-" - -.". -, , - -"- - ''" '"-' .- - " -- -.-.':.-' ,-.. -' - . .-. -" ." .'".. " - . . - . : - .- . , "

*~~~~~~~~~~~~~~~~FV mpg~v'- r.-' ~~- .i ,"'.~~~rjr ~~' "'xr.PXrjw'. Wj wV -, 7E~~ ~~ W v wX7 -J1 P V ~-~

Rules for Removing Subvalue Nodes IF I

Eventually all nodes, including subvalue nodes (except the value node), must be

removed from the influence diagram in order to obtain the solution. However, we

would like to keep subvalue nodes in the diagram as long as possible to reduce the cost

of removing the chance and decision nodes. It is important to consider at what point -'

the subvalue nodes should be removed. A complete solution to this problem would

have to incorporate the current research on finding the optimal ordering of node

removals. This is beyond the scope of this thesis. In this research we remove

subvalue nodes only in order to make a necessary chance node removal or if they

sa"fy one of the heuristics discussed below.

Consider the influence diagram in Fig. 3.5. Note that the predecessor of subvalue

node w is a subset of the predecessor set of subvalue node u; that is, C(w) is contained

in C(u). This suggests that no operation on the influence diagram can possibly be of

larger size if u and w are removed. For example, consider removing z into u. The size

of this operation is JKz x f2C(z) X C(u) I. Now, say u and w are removed into V

first. To remove z into V now costs IQz x QC(z) x QC(V) I. But, because C(w) is

contained in C(u), C(V) = C(w) u C(u) = C(u). So the size of the operation of

removing z into V (after removing u and w) cannot be greater than removing z into u.

V.

65

-

4P* ',. o"

Zo Y

Figure 3.5. Subvalue nodes u and w should be summed per the subset
rule.

From the above reasoning for z, the cost of removing y into V (after removing u

and w) cannot be greater than removing y into u. And indeed, if y is removed into u, it

must also be removed into w. Thus, as for removing y, it is cerainly better to remove u

and w first.

Therefore, we see that removing u and w before z and y cannot increase the cost of

removing z and y. Also, not removing u and w first might increase this cost because

predecessors of both u and w will have to be removed into both.

Thus, when the subset condition holds on the predecessor sets of two subvalue

nodes which have a common successor, we should remove the relevant subvalue

nodes. This prevents duplication of operations and never increases the cost of any

operations. We formalize this in the following rule.

Rule 1 (Subset Rule). If two subvalue nodes r1 and r2 have the same successor,

a sum or product node r, and C(r1) is contained in C(r2), then r1 and r2 should be

removed into r. If r has successors other than rI and r2 then a subvalue node r'

should be introduced as a predecessor of r and rland r2 removed into r'.

66
I,%

A special case to which the subset rule applies is when all chance and decision

nodes have been removed from the influence diagram such that only subvalue nodes

remain. In this case there will be sets of subvalue noes which have the same

successor and nil predecessors. These satisfy the subset rule and should be reduced

into their respective successors.

There is another case in which a set of subvalue nodes should be removed.

Consider decision node d and subtree(r) of subvalue nodes such that if subtree(r) were

reduced into r then decision node d would be removable by Theorem 2 in Section 2.3.

The fact that d is removable after subtree(r) is reduced implies that every chance and

decision node in C(subtree(r)) is also in I(d). Therefore, no node can be reduced into

subtree(r) until d is removed. But d cannot be removed until subtree(r) is reduced. We

summarize this in the following rule.

Rule 2 (Removable Decision). If decision node d and subtree(r) are such that

reducing subtree(r) into r makes d removable per Theorem 2 in Section 2.3, then

subtree(r) should be reduced into r.

In addition to the above two cases, sometimes a set of subvalue nodes must be

removed to allow a chance node to be removed. For example take an MDP with a

multiplicative objective as in Fig. 3.6. Node v(3) represents the salvage value. Chance

node x(3) must be removed next. It is necessary to first multiply together v(3) and r(2)

per the rule on chance node removal in Section 2.3. The operation of removing x(3)

consists of introducing node v(2) = r(2) * v(3) , removing r(2) and v(3) into v(2) and

finally removing x(3) into v(2).

67

r..

F--

-f~~ d(') d)d2

rO r(2 v(3
.- .. "

Figure 3.6. Subvalue nodes r(2) and v(3) must be multiplied before
expectation with respect to x(3).

There are other cases when subvalue nodes should be removed that do not fall into

either of the above categories. These cases have not been thoroughly investigated. A

simple example is given though in Fig. 3.7. In Fig. 3.7a it is more efficient to solve .

the problem by removing r and s before x even though it is not necessary and the

subset rule does not apply. However, if the influence diagram is modified slightly to .. ,*,."*

that in Fig. 3.7b, it is more efficient to remove x before removing r and s.

68
*.°

.

;ii>~~~~~~~~~~~~~~~.-...
- -- --.-..--.-... . .. "............--,-.. ..-.... . . .

.1,

.. .

.'..

V V

(a) (b)

Figure 3.7. Example showing conditions of the subset rule are not
necessary.

In summary, we have seen that subvalue nodes should be removed if they satisfy

the conditions in the subset rule or in the removable decision rule. They must be

removed to be able to remove certain chance nodes. Finally, we saw that there are

certain cases when neither of the above hold, but the subvalue nodes should be

removed anyway. The next subsection goes into detail on removing subvalue nodes as

part of the operation of removing chance and decision nodes.

Subvalue Nodes and Removal of Chance and Decision Nodes

We know that when the conditions for the subset rule or the removable decision rule

are satisfied the relevant subvalue nodes should be removed. These conditions will be

checked in each step of the algorithm. The example of Fig. 3.7 illustrated that there

are other times when it is profitable to remove subvalue nodes when the two rules do

not apply and it is not necessary to remove some chance node. A complete answer to

the problem of when to remove subvalue nodes will need to incorporate the work on

optimal ordering of node removals. This will hopefully provide an algorithm that

69

... ',.. "- .. :--

produces the optimal ordering for removing all nodes in the subvalue node influence
t'

diagram, including chance, decision and subvalue nodes. In this thesis, subvalue r'A:

nodes are only removed if one of the two rules above apply or if they must be removed

in order to remove a specific chance node. No attempt is made to determine the optimal _

solution process.

Thus, in the course of the algorithm at each step the subvalue tree is examined for ['

any subvalue nodes that satisfy the subset rule. If not, the influence diagram is

examined for any removable decision nodes. If there are no removable decision nodes,

all chance nodes in the influence diagram are examined and one is selected to be t

removed next. Some chance nodes will not be removable until certain decision nodes

are removed. These are immediately eliminated as alternatives for removal in the

present step. Other chance nodes will be removable if certain subvalue nodes are

removed first. These are considered as alternatives for removal. The relevant chance

node and the corresponding subvalue nodes are removed as one operation. Removing

certain chance nodes might involve removing a large part of the subvalue tree. This [-

could significantly increase the cost of future removals. Such indirect costs must be

considered by whatever technique is used in the algorithm to select the next node to

remove.

Because we are now considering the removal of a chance or decision node and a

corresponding set of subvalue nodes as one operation, it is helpful to develop more

general conditions for removing chance and decision nodes. First, it is necessary to

present the following lemma.

Lemma. If x is a chance node in an influence diagram and its successor set contains 6:

only chance nodes or subvalue nodes, then the arcs from x to its chance node

successors can all be reversed.

'..

.- ~70, ."

.- .i-'-r

'" .:" "A "" " " ",-. . . " ." -..'" "--" " -"- :" " .;'- '- " " ""- -""- "-" -"". "- " - "- ' - -' ""- -- "" '.. ' - ." ""- '" " " "

Proof. An arc between two chance nodes can always be reversed if there is no alternate

path between the two. There are no cycles in influence diagrams. Also, all successors U
of a subvalue node are other subvalue nodes. Therefore, there must be some chance

nodet y in the successor set of x such that there is no path from another node in the set

to Y. This being true, there can be no path from a successor of x to y, and so there is [_l

no alternative path from x to y. Therefore the arc from x to y can be reversed. The

result is another influence diagram that satisfies the conditions in the lemma so if x still

has successors, an arc from x to one of these successors can be reversed. This

continues until x has no successors but subvalue nodes/

We are now ready to give conditions for the removal of a chance node from an

influence diagram with subvalue nodes.

Theorem 1 (Chance Node Removal). If x is a chance node in an influence

diagram with no decision successors then x can be removed from the diagram by a

combination of arc reversals, removal of subvalue nodes, and expectations.

Proof. Since x has no decision node successors, it has only chance and subvalue node

successors. The arcs to the chance node successors of x can all be reversed by the

preceding lemma. The node x will then only have subvalue node successors, the set R

{ro, r1 , r2 ... }. If the path from each ri in R to the value node contains no

blocking product node with respect to x and ri , then x can be removed from the

diagram by sequentially taking expectation of each ri over x by Theorem I in Section

2.3. For each blocking product node b,the b subvalue subtree can be reduced into b.

It might be desirable to introduce new subvalue nodes in the course of this reduction.

The only successors of node x will then be a set of subvalue nodes f

71 ?)i!;;r

R'= {r'0 , r'1, .. .1 such that the path from each r'i in R' to the value node contains no

blocking product nodes. Node x can then be removed by sequentially taking

expectation of each r'i with respect to x by Theorem 1 of Section 2.3.0

There is a corresponding rule for decision nodes. Remember that if s is a subvalue

node, C(subtree (s)) is the set of all chance and decision nodes that directly precede a

subvalue node in the subvalue subtree defined by s.

Theorem 2 (Decison Node Removal). If d is a decision node in an influence

diagram such that

a) each successor of d is a subvalue node

b) the immediate reverse dominator of d, subvalue node s, is such that

C(subtree(s)) \ d is a subset of I(d)

then d can be removed from the diagram by first removing the s subvalue subtree

and then maximizing s over d.

Proof. The s subvalue subtree can be reduced into s. After this reduction all

conditions for Theorem 2 in Section 2.3 are satisfied and d can be removed into s by -

maximization of s over d.-:

3.4 THE ALGORITHM

The algorithm is now presented. This will be followed by a discussion of why it is

guaranteed that the algorithm always reduces a subvalue node influence diagram to the

value node producing the optimal policy and maximum expected value for the problem.

72
-9.

* - * , . b.°. . -

72~~ -ii}


~~~*-~7 M. 7 . - - - .

DEFINE PROCEDURE EVALUATESVID

BEGIN

check for legal subvalue node influence diagram r. .

add implicit arcs

subvalue structure generation

WHILE C(V)#0 DO -

) BEGIN

IF subset rule holds for any set of subvalue nodes R

THEN remove set R (possibly adding a partial sum or product

subvalue node)

ELSE IF there is a removable decision

THEN remove the decision node and the corresponding subvalue subtree

if necessary (possibly adding a partial sum or product subvalue node)

ELSE BEGIN

choose chance node to remove

remove that chance node

END

END

END

In the course of the algorithm barren nodes (nodes which have no successors)

might be created after a decision node is removed. It is important that these be deleted

from the diagram after each step if any were created. Now, we have showed

previously that subvalue structure generation adds only a finite number of nodes to the L

influence diagram. Thus, we begin the iterative part of the algorithm with an influence

diagram that has only a finite number of nodes. Also, remember that any time a

* - 73

r



'..* -W al.. .. ~ - ..

subvalue node is introduced in the iterative part of the algorithm, it is only for the

purpose of removing at least two other subvalue nodes in the same step. Thus the .

algorithm is guaranteed to reduce the subvalue node influence diagram to the value F

- node and thus provide the solution if there is always at least one removable node at

each step.

Consider first the case in which all chance and decision nodes have been removed

from the diagram. The influence diagram contains only subvalue nodes. These must

be in a tree structure. Because there are a finite number of nodes, there must exist a

subvalue node in this structure whose predecessor subvalue nodes have no

predecessors. This set of predecessors is removable.

If there are chance or decision nodes in the diagram, then the following theorem

guarantees that at least one of them is removable.

Theorem (Existence of a Node to Remove). In a subvalue node influence -"-

diagram there is always a removable node until only a single value node remains. LA.

Proof. If there are no chance or decision nodes in the diagram, then it contains only

subvalue nodes and the above argument holds. If there is no decision node in the

diagram, then there must be a chance node which has only subvalue nodes and other

chance nodes for successors. This chance node can be removed by Theorem I in

Section 3.3. Suppose there is at least one decision node in the diagram. Then there

must be a decision node d in the diagram that succeeds all other decision nodes. If d is

removable then the proof is complete. If d is not removable, then there must be a

chance node x that either is a successor to d or is not in I(d) but is an element of

C(subtree(s)) where s is the immediate reverse dominator of d. In either of these cases, F

x is not in I(d). It thus cannot precede any decision node or it would be in 1(d) because

74

- --- ' -'-" ' -- 't 7.- - 7- . '.** . . . . , . . . .__. . . . ._ . . . . . -, . . . -, - . .. ° -. . ..



of "no forgetting". The chance node can thus be removed by Theorem 1 in Section

3.3.,, r. ..

Thus the algorithm always removes all of the nodes from the influence diagram but

for the value node and so always produces the optimal policy and maximum expected

value.

NOTES AND REFERENCES

Section 3.1. The first algorithm for solving influence diagrams with a single value

node is contained in [S21. The work on optimal ordering of node removals in

evaluating influence diagrams is in [Eli].
r*..

Section 3.3. The fact that all the arcs from some chance node to a set of chance

nodes can be reversed is established in [S21.

7p-o .o

!e7.

75"°

% I-.' "



Chapter 4

Coalescence and the
Principle of Optimality

This chapter begins by discussing the concept of coalescence in both trees and

influence diagrams. Then it is noted that the principle of optimality is actually a special

form of coalescence. The remainder of the chapter discusses the relationship between

the principle of optimality and the influence diagram with subvalue nodes.

4.1 COALESCENCE AND INFLUENCE DIAGRAMS

Coalescence is the operation of reducing the size of a decision tree by recognizing

certain nodes in the tree as identical. Therefore, the values for these nodes (calculated

byrolling back the tree to the node) need only be calculated once instead of many

times. This reduction in the size of the tree is valid under certain conditions involving

conditional independence among the variables in the model, the separability of the value

function or both. This is a commonly applied technique for reducing the size of a

decision tree to manageable proportions. A well documented example is the Voyager

Mars decision analysis described in Section 5.5. In this example the application of

coalescence reduced the number of branches in the decision tree by an order of

magnitude.

76



Coalescing the tree based on conditional independence is referred to as

nonseparable coalescence. Coalescing the tree based on separability of the value

function is referred to as separable coalescence. Remember that separable in the

context of this thesis is used to mean additive or multiplicative.

* The influence diagram, without the enhancements developed in this thesis, is a very

natural and effective way to represent and exploit the conditional independence in a

decision model. It achieves all the efficiency that would be provided by modeling the

problem as a tree and applying nonseparable coalescence. An example will help to

illustrate this.

x y z

v(y,z)

v(y'z)

v(y,z)
v(y,z) ",.

Figure 4.1. Example of nonseparable coalescence.

Note the probability tree in Fig. 4.1. The key characteristic of this problem is that z

and v are conditionally independent of x. Thus, the value of x can be ignored in

removing the variable z from the tree by expectation. This is represented in the tree by

having only one z subtree for each value of y and not one for each value of the vector

(x,y). The z subtree need only be calculated twice instead of four times. This same

problem is represented in influence diagrams as in Fig.4.2. 5'

77



%%

X y z V

Figure 4.2. Example of Fig. 4.1 as an influence diagram.

The influence diagram makes it clear that z and v are both conditionally independent

of x and that expectation of v with respect to z can be performed while ignoring the

value of x. The influence diagram not only allows exploitation of the conditional

independence in the model (at least as well as it could be exploited by nonseparable

coalescence in the tree) but it also provides all of the other advantages of the influence

diagram.

The influence diagram with subvalue nodes as developed in this thesis was

designed to exploit the separable nature of the value function of decision problems. It

can achieve all of the efficiency provided by modeling the problem as a tree and

applying separable coalescence. The decision problem modeled by the tree in Fig. 4.3

and the influence diagram in Fig. 4.4 provides an example.

x Y z
r(x,v) z s(yz)""

v(x,y,z) - q + r + s

"'"y \ 
v(x,y,z)= q + r +s

-- r(x.v) S(Y"")
(X. S(Y v(x,y,z) = q + r + s

Figure 4.3. Example of separable coalescence. -'-.

78
-ee ." r



L-

The key characteristic of the problem is that z and s are conditionally independent

of x and s enters into the value function as an addend. This allows z to be removed by

expectation while ignoring both the variable x and the q and r terms of the value

function. The resulting values (one for each y) must be added to r(x,y) before y is

removed. In the tree, this is rather hard to see. It is very naturally represented,

however, in the influence diagram.

Figure 4.4. Example of Fig. 4.3 as an influence diagram.

It is clear in the influence diagram that z can be removed considering only y and s.

We then note that the predecessor set of q is a subset of the predecessor set of r and the

predecessor set of s is also a subset of the predecessor set of r. Thus nothing is lost at

this point by removing q, r and s into v before removing x and y. This is an instance

of the subset rule.

For larger problems or problems in which the the value function is both additive

and multiplicative, it becomes a nontrivial engineering challenge to identify and

represent all nonseparable and separable coalescence in the tree so that it can be

exploited in solving the model. On the other hand, in the influence diagram, the

modeler need only: 1) represent the conditional independence among the random

variables in the model by placing no arcs between the appropriate nodes and

79
"r

..........-.



2) properly represent the relevant sums and products in the value function. In solving

the resulting influence diagram it is possible to obtain all the efficiency that would result

from modeling the problem as a tree and applying nonseparable and separable F"

coalescence.

Asymmetry

Besides coalescence there is another common charactericstic of decision problems that

allows a significant decrease in the size of the decision tree model and in the number of

calculations necessary to Solve it. This characteristic is asymmetry. Just how dramatic

the savings in size and computational effort can be due to asymmetry is illustrated in the

Voyager Mars application in Section 5.5. A simpler asymmetric problem is illustrated

in Fig 4.5.

x y z
v(X,y,z)

v(x,y,z)

v(x,y,z)

v(x,y,z)

v(x)

Figure 4.5. Tree for an asymmetric decision problem.

wf The key characteristic of this problem is that for certain values of x, v does not

depend on y or z. It is common in this case to remove the y subtree for the relevant

branch of x from the tree.

80



r - .r -: .-- +, -w . ; . .. =. ... . .. . . . . . . . . . . . ._- . .l =;. . ,. ,~l . " . - S'"T -- ' 'k ''- .~r .. . .

A. At present the influence diagram cannot explicitly represent nor exploit asymmetry

in a decision problem. The Voyager Mars application shows that the computational

complexity of solving a decision problem can be significantly increased because of this

shortcoming.

We thus have the following conclusions on coalescence, asymmetry and influence

diagrams.

Influence diagrams are a powerful tool for a simple and full exploitation of the

.4 conditional independence and value function separability in a decision model. Any .

efficiency from either of these two gained by applying coalescence to a decision tree

can be obtained by the influence diagram with much less work on the part of the user.

• Coalescence is built on conditional independence and separable value functions.

These aspects of a problem are represented explicitly in the influence diagram. Thus

insight into the coalescence concept can be gained by representing it in influence

diagrams.

The influence diagram gives the analyst more flexibility in solving these

problems than trees.

• Asymmetry, though like coalescence a very important factor in decreasing the

computational complexity of solving a decisin problem, cannot be represented nor

exploited within influence diagrams. %

4.2 THE PRINCIPLE OF OPTIMALITY IN INFLUENCE

DIAGRAMS

In light of this discussion on coalescence, let us consider a Markov decision process

(MDP). Fig. 4.6 illustrates an influence diagram representation of a three stage MDP.

... r . .-. -8 1



.............

IF

Figure 4.6. Three stage MOP.

X(O) d(O) X(1) d(l) x(2) d(2) x(3)

Figure 4.7. Equivalent tree for the influence diagram in Fig. 4.6.

82



This is an example of the issues discussed in the previous section. Indeed, it is

equivalent to solve the MDP by either solving the influence diagram in Fig. 4.6,

solving the tree in Fig. 4.7 or by using dynamic programming. The MDP has a

special structure that allows it to be solved very efficiently by the influence diagram

with subvalue nodes or by applying coalescence in trees. There are two aspects of this

special structure. First, the value function is separable. In this specific example it is a

sum. Little would change if it were a product. Secondly, the dependency and

information structure of the problem satisfies the Markov property; that is, given the

current state, the future evolution of the process is independent of the past. Also, the

current state of the process is observable, it is known to the decision maker when the

current decision must be made. This special structure of the MDP guarantees us that

the optimal policy of the process will have a very special property. This property is the

principle of optimality. This principle, credited to Richard Bellman, is an important

concept in decision theory and is the theoretical basis of dynamic programming. From

[B I] we have the following statement of the principle.

Principle of Optimality. "An optimal policy has the property that whatever the

initial state and initial decision are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision."

The influcnce diagram offers a nice illustration of this principle. Consider solving

two MDPs (designate them (a) and (b)) as influence diagrams. The only difference in

the two is that (b) is missing the first stage of (a). We call (b) the truncated process.

Fig. 4.8 depicts the steps in the solution procedure of the two problems in parallel.

.83...-



(a) (b)

Fiue48 ouinstp o nM Padis rnae eso.L

84t



*~ ..

A~ AL

(a) (b)

Figue 48(cot.) Soltio stes fr a MDPandits runatedverion

'Me hadd ndesindiatethenods tht ae ivoled i eah oeraion

Cosdei-th oesivlvdi ec teiti lertatteopia plc o h

ItC

Feiur .8cot. Sout ites foo le r ahtdcin ps anCd ha\ ee truncated rin

Thohddndridct h oe ta r novdi ahoeain

85



just before any stage k instead of stage 1 and the optimal policy of the truncated process

would be equal to the last N-k decisions of the optimal policy of the full decisionI ~process. When this equality holds, we say that the optimal policy of the truncated ~

9. process is consistent with the optimal policy of the full process.

An Influence Diagram Condition for the Principle of Optimality

Consider again the conditions on the value function and the dependency and

information structure that were true of the MDP so that it satisfied the principle of

optimality. Specifically, the value function must be separable (either a sum or a

product). The current state must be observable and contain a sufficient summary of the

history of the process such that the future evolution of the process is independent of

that history given the current state. Equivalently, in the language of influenceH

diagrams, the value node must be a sum or product node with the stage rewards as

predecessors . The node representing the current state must be a direct predecessor of

the current stage decision and this node must be on every directed path from its

predecessors to its successors (except the value node).

Now, the influence diagram provides the capability to solve more complex --

decision processes than the standard MIDP. It would be helpful to have a condition on

the influence diagrams of these more complex decision processes to ensure that the

principle of optimality applies. This will provide important information on the

practicality of solving the decision process. We have the following proposition.

In it the value of each variable in X(k) collectively define the state of the decision

* process. It is assumed that each stage has only one decision variable, and so there is a

one to one relationship between stages and decisions. It is assumed that all forgettable

arcs have been removed from thle diagram (forgettable arcs are defined in a note

86



following Theorem 2 in Section 2.3). Figs. 4.9 and 4.10 accompany the proposition

and its proof. N
Proposition (Principle of Optimality). If for the influence diagrams with stage

decision variables d(O), d(1).... d(N), there exists the set of nodes X(k) =

{x 1 (k), x2 (k) .... I associated with each decision d(k) such that

a) all nodes in X(k) are informational predecessors of d(k)

b) the value node is a sum or product node .i

c) at least one element of X(k) is on every directed path from the predecessors

of X(k) to the successors of X(k) (with the exception of the value

node), I
then the optimal policy for the decision process, {d*(O), d*(l) .. , d*(N)}, will

have the property that policy {d*(k), d*(k+ 1),..... d*(N)} is optimal for the

decision process defined by the original decision process with all nodes, except

X(k) and its successors (direct or indirect), deleted.

Proof. Solve for the optimal policy of the original decision process by first introducing

a subvalue node r (of the same type as the value node, that is sum or product) as a

predecessor of the value node such that all directed paths from X(k) to the value node

go through r and all directed paths from the predecessors of X(k) that do not go

through X(k) do not go through r either. A possible next step in finding the optimal

policy is to remove all chance and decision node successors to X(k). Now, each

chance, decision or subvalue node successor of X(k) (except the value node) can have

only X(k) and its successors as conditioning predecessors by condition (c). Now, no

predecessors of the value node besides r lie on a directed path from a successor of X(k)

to the value node because of the wav r was introduced. Therefore, applying any

expectation or maximization operator to the set V of all subvalue nodes of the decision

87

-7' 7



process is equivalent to applying the expectation or maximization operator to subtree(r).

Therefore, removing all chance and decision node successors to X(k) and thus finding I
the last N-k decisions of the optimal policy for the full decision process does not I

involve any nodes except X(k) and its successors without the value node. Therefore, .-

these steps are exactly equivalent to finding the optimal policy of the decision process

defined by removing all nodes from the original decision process except X(k) and its I

successors. 0 .

V

Figure 4.9. The unshaded part of the MDP corresponds to a decision
process formed by deleting all nodes except X(1) and it successors.

88



- 4

, r r

Figure 4.10. An MOP with subvalue node r introduced as in the proof of
the proposition.

Some examples will serve to illustrate the meaning and usefulness of this

proposition. First consider the MDP again of Fig. 4.6. Note that the usual state

variable serves as the set X(k) of the proposition and so, as we know, the MP

satisfies the conditions for the principle of optimality.

As mentioned earlier the subvalue node influence diagram provides the ability to

solve decision processs that vary from the strict MDP sturcture. The decision model

resulting from NASA's Voyager Mars project is such a case. The influence diagram

for a pilot model from that application is shown in Fig. 4.11. Though its structure

varies significantly from the MIDI, the influence diagram can be readily solved. Note

that for decision s(k) nodes m(k-2) and s(k- 1) serve as the set X(k) and thus the

principle of optimality applies.

89

< .;.:.}r



5- V. W%

Figure 4.11. Pilot model for NASA's Voyager Mars project.

A very interesting decision process is the partially observable Markov decision

process (POMDP). In this variation of the MDP the state variable at each stage is

unobservable. The decision maker only observes the outcome of an observation

variable. The influence diagram for one formulation of the POMDP is in Fig. 4.12.

90

.. -

. . . . -.~ ~.*a t~E i4~ ~ - .. - ."-



d
.- , . .~

p

Figure 4.12. Partially observable Markov decision process. --

One can see from the influence diagram that there is no set of nodes associated with..'-

each stage to serve as the set X(k) of the proposition. Thus the principle of optimality [-

does not apply to this formulation of the POMDP. Indeed the work required to solve it

grows exponentially with the number of stages. For more than a few stages it is . .

usually impractical to solve this formulation of the POMDP. -..

If the model is reformulated with the new state variable being the decision maker's :.

probability distribution on the current state instead of the current state itself, then the .. •-

influence diagram in Fig. 4.13 results. Note that the state variable rt(k) representing .L-E-

the probability distribution on the current state now serves as the set X(k) of the

propostion and so the principle of optimality holds. The subtleties of this problem are

discussed in more detail in Section 5.3. I

I I I~ .. . . . . -- *°.

grow exonenialy wth te nmberof tags. Fr mre tan fe staes t.i

• .,.
" -,'.-.'..s all im practical.... to, .. solve'..' this-. fo m l to of the. ",- ,'-' " .-. ,- -. ..-. " ,' .,-- .. ,- ,," .,_-"., -. ,-•--, -, "-., . .
.- ~ ~ ~ ~~ ~I '_-, -- .- - -- -, ,the model i.. s reorulte with die new -state. var.iable being the_ deci-sion ma ker's . - - - ' Z Z - - -.



Figure 4.13. Reformulated partially observable Markov decision process.

Importantly, this example shows us that whether or not the principle of optimality

applies depends on the formulation of the problem and not the problem itself.

Usefulness of Subvalue Nodes and the Principle of Optimnality

The principle of optimality is an important concept in solving influence diagrams. If an

j influence diagram of a decision process satisfies the principle of optimality then the

subvalue nodes are very useful and significantly reduce the work required to solve the

problem. If, however, the principle of optimality is not satisfied, the subvalue nodes

provide little if any benefit. For many decision processes the fact that the principle of

optimality is not satisfied means that the decision process as formulatedwill be

impractical to solve. Reformulation of thle problem to one that satisfies thle principle of

92

• . *



optimality might be necessary. This relevance of the principle of optimality for solving

influence diagrams is illustrated by the two decision processes in Fig. 4.14.

(a)

93..

r.?

(a -



S. °

L Q L

(b)

Figure 4.14. Two similar decision processes with large differences in
computational complexity.

Note the strong similarity between the two processes. The only difference is in the

shaded arcs. Note that for the process in (a) the x(k) node serves as the set X(k) and

so the principle of optimality holds. However, for the process in (b) there is no set of

nodes to serve as X(k). Therefore the principle of optimality does not hold for the

decision process in (b).

The first several steps of the solution process for each problem is shown Fig. 4.15

to illustrate the problems that are encountered when trying to solve a decision process

that does not satisfy the principle of optimality. In order to sol ve either decision

process, decision node d(2) must be removed before the other decisions. However,

before removing, d(2), x(3) and b(2) must be removed. Removing x(3) is easy in both

cases. Removing b(2) in (a) is likewise a simple operation. Hlowever, to remove b(2)

in (b) requires reversing the arc from b(2) to x(2). This results in b(l) becoming a

94

.. . . .. . .. .,t



..,

predecessor of b(2). Therefore, when b(2) is removed into r(2), b(1) becomes a

predecessor of r(2) and so must also be removed before decision d(2) can be made. In

removing b(1), b(O) becomes a predecessor of r(2). Thus all the b(k)'s must be ,

removed before decision d(2) can be removed. In the process of removing the b(k)'s,

r(2) becomes a successor of every chance and decision node in the problem. At that

point the subset rule informs us that it is better to remove all the subvalue nodes into the - -

value node resulting in a single value node influence diagram. Thus, the subvalue

nodes are not useful in solving this decision process. The work required to solve (b)

will grow exponentially with the number of stages. I

Therefore, we can see that in formulating a decision process it is important for the

analyst to strive for a formulation that satisfies the principle of optimality. The

influence diagram is an effective tool for assisting the analyst in finding such a

formulation.

i'i

(a) Node x(3) removed into r(3) by expectation

95
.....-.. ,

°



p -

(b) Nodes r(2) and r(3) summed

(c) Attempt to remove b(2)

Figure 4.15. First few solution steps for the decision processes in Fig.-
4.13.

Conclusions

Suibvalue nodes allow the principle of optim'ality to be exploited in solving decision l

* -

processes formulated as ifucedia-rarns. We have in fact show~n that the subvalue

node concept is not very useful for problems to wkhich the principle of optirnality does

not apply.

96



A condition in terms of the influence diagram has been developed that ensures us

that a specific influence diagram formulation of a decision process satisfies the principle

of optimality. We have also seen that whether or not the principle of optimality holds

depends on the formulation of the decision problem and not the problem itself. Thus

the influence diagram promises to be useful in formulating decision processes as a tool

to guide the analyst toward a formulation for which the principle of optimality holds.

If a decision problem cannot be formulated in such a way that the principle of

optimnality holds, then it can still be solved as an influence diagram. The algorithm will

exploit the separability of the value function as much as possible. The difficulty in

Solving the decision process will depend on how close it is to satisfying the principle of

optimnality.

Also, because the algorithm exploits the separability of the value function without

assistance from the user the algorithm automatically exploits the principle of optimality

if possible in solving decision processes. Thus the user need only input a decision

process as a single value node influence diagram with an algebraic representation of the

value function. The preprocessor of the algorithm generates a subvalue structure by

parsing the value function and the algorithm solves the resulting problem. If the

problem satisfies the principle of optimality the steps taken by the algorithm to solve the

decision process will correspond to dynamic programming.

NOTES AND REFERENCES

Section 4.1. Coalescence in decision problems is discussed in detail by Olmnsted in

(011. The examples in Figs. 4.1, 4.3 and 4.5 are also in [011

Section 4.2. The statement of the principle of optimality is due to Bellman [B I].

97



' I'

Chapter 5

Applications

a-._

The influence diagram with subvalue nodes has been applied to several sample

problems. A few of those applications are presented here to illustrate the strengths and

weaknesses of the theory developed in this thesis.

The first three examples illustrate the use of the subvalue node influence diagram

and the associated algorithm to formulate and solve Markov decision processes

(MDPs). The first example is the standard MDP, the second is a risk sensitive MDP in

which the utility function is exponential and the third is an MDP with random rewards.

Several of the most common deviations from the standard Markov decision process

can be solved directly on the subvalue node influence diagram without using the state

augmentation technique. A Markov decision process with time lag is used as an

example to illustrate this.

The state of the art algorithm for the partially observable Markov decision process

(POMv1DP) requires the POMDP model to be reformulated. Though the influence

diagram cannot be used to solve the POMDP, it lends insight into this required

reformulation.

-'a0 .

I
98

.21,

•r: °

a *'4.a.'- . _ ..-.,.5._, -- .a,- --. _,-, -.' -'.-..'.- . . .... _.-a-. - .. - .' '.- -.... ... - '.-" -. ' .-. . .. " -. '. ". ..



-.- w-"-.- . - - - - - - - - - - - - -- .-

,,, ...

The inventory problem with correlated demands and forecasts on future demands

could be solved by treating it as a Markov decision process with an augmented state

variable. Solving the problem directly with the subvalue node influence diagram

significantly decreases the data storage requirements and computational complexity.

Finally, the decision model of an actual decision analysis is formulated as an

influence diagram. This example shows both the strength of the influence diagram in

capturing the separable nature of a value function and its weakness in capturing

asymmetry.

In solving these applications the algorithm is performing operations analogous to |

dynamic programming. The user, however, need only represent in the model the

relevant sums and products in the value function. The user need not set up the

recursive equations of dynamic programming or know anything about dynamic

programming.

5.1 MARKOV DECISION PROCESSES L

The algorithm developed in Chapter 3 can be applied to solving Markov decision

processes (MDPs). The standard MDP with an additive value function can be solved

as well as the risk sensitive MDP in which the utility fuction is exponential and the

MDP with random rewards.

Standard Markov Decision Process

The graph of the influence diagram of a four stage MDP is shown in Fig. 5. Ia.

Remember that the influence diagram contains both a graph and a data frame. The data r

frame of the MDP influence diagram is in Fig. 5. lb. There is one subframe for each

99

. . .. .
. . . . . . . . . . . . . . . . . . . . . . . .. . . . .



node. The computer implementation of the algorithm in this thesis uses the data frame

of the influence diagram as its data structure.
The first few steps of the algorithm are depicted in Fig. 5.2a through 5.2e. Note

that in the first step the preprocessor of the algorithm recognizes that because the value

node is a sum node, the deterministic rewards r(O) through r(4) can be treated as

expectation nodes, that is subvalue nodes.

The MDP is one of the simplest cases of subvalue node influence diagrams.

Because it is so highly structured there is only one chance or decision node that is

removable at each step. The node removals performed by the algorithm correspond
exactly to the dynamic programming operations for solving an MDP as was discussed

in Section 2.1.

- - °

r(O rt)r2 r3 r(4) .

Figure 5.1a. Graph of the influence diagram for an additive MDP.

100-



%: A

;(mdp-addS (xO (kind chance)
(outcomes 1 23 45)
(probs array #58011892)
(preds)F
(succs x I dO rO)
(dimS))

(dO (kind decision)
(alts a bcd e)
(preds xO)
(succs X I rO)
(dimS))

(rO (kind det)
(vals array #5801 18A2)
(preds dO xO)
(succs V))

(xlI (kind chance)
(outcomes 1 2 3 45)
(probs array #58011882)
(preds dO xO)
(succs x2dl rl)
(dim 5)

(dl (kind decision)
(altsab c de)
(preds xl0
(succs x2 ri)
(dim 5)

(ri (kind det)
(vals array #580118A2)
(predsd I x 1)
(succs V))

(x2 (kind chance)
(outcomes1 2 3 45)
(probs array #58011882)
(preds dl xi)
(succs 03 d2 r2)
(dim 5)

(d2 (kind decision)
* (alts a bc de)
* (preds x2)

(succs 03 r2)
* (dimS))

(r2 (kind det)
(vals array #5801 18A2)
(preds d62 x2)
(succs V))

(x3 (kind chance)
(outcomes1 2 3 45)

* (probs array #580 11882)
(preds d2 x2)
(succs x4 63 r3)
(dimS))

(d3 (kind decision)

101



dr (preds x3)
(succs A4 r3)
(dim 5))

(r3 (kind det)
(vals array #5801 18A2)
(preds d3 x3)
(succs v))

(x4 (kind chance)
(outcomesl1 2 345)
(probs array #58011882)
(preds d3 x3)
(succs r4)
(dim 5)

(r4 (kind det)
(vals array #5801 187E)
(preds x4)
(succs V))

(v (kind det)
(type sum)
(preds rO r I r2 r3 r4)))

Figure 5.1 b. Data frame of the influence diagram for an additive MDP.

(a) Introduction of subvalue nodes. I
102



(b) Expectation of r(4) With respect to x(4).

(c) Introduction of subvalue node v(3).

103



(d) Subvalue nodes r(3) and r(4) summed.

(e) Maximization of v(3) over d(3).

Figure 5.2. First few steps of the solution process for the additive MDP.

If one was solving this NMDP in the probability calculus with dynamic

programming, one would rewrite thle original value function

104
.4

r



V =r(0) + r(l) + r(2) + r(3) + r(4)

p as
v(4) =r(4)

v(i) =r(i) +v(i+l) for i=0 to 3

V =v(0).

These v(i)'s correspond precisely to the v(i) subvalue nodes introduced by the

algorithm. An example is Fig. 5.2c. in which v(3) was introduced to represent the sum

of r(3) and r(4). This means that the algorithm is setting up the recursive equations of

dynamic programming as it is executing without assistance from the user.

Risk Sensitive Markov Decision Process

For the same problem assume the decision maker is risk averse with exponential utility

function

u(V) =-exp(- 7y V)

In the current problem, we have value function

V =r(0) + r(l) + r(2) + r(3) + r(4)

and so using the above utility function the value function of the problem becomes

u(V) =-exp[-y. [r(O) + r(l) + r(2) + r(3) + r(4)]]

WVe have

u(V) - {exp[-y. [r(O) + r(l) + r(2) + r(3) + r(4)111

f {e x p[I() r(O) I -) r(l)I + [(-y) *r(2)] + [(y r(3)1 + [(--y) *r(4)I1

105



.--* .,- - --- .. -, '. - .-- , .w . L- , . ," °,,. " -. ' 1 " o -- 
" 

* " -' - ' '

I

Because eX+Y = ex • eY this can be rewritten as

u(V) = -{exp[(-y) - r(O)] * exp[(-y) r(1)] • exp[(-y) . r(2)] .

exp[(-y) * r(3)] * exp[(-y) • r(4)] }

We can thus minimize instead of maximize I
= {exp[(-y) * r(O)l * exp[(-y) • r(l)] * exp[(-y) • r(2))

expf(-y) r(3)] * exp[(-y) * r(4)]} I'
Therefore the original problem can be formulated as an influence diagram as in Fig.

5.3. Note that the subvalue nodes now contain the negative of the utilities of the

rewards for each stage rather than the rewards themselves. V..

Figure 5.3. Influence diagram for a risk sensitive MOP with exponential
utility function.

r The ordering of node removals performed by the algorithm to solve this influencer

diagram is exactly the same as for the additive case. There are only two differences in

the solution procedure. First. the operation of removing r(i) and v(i+I) into v(i) at each

106

S. . ...



stage now corresponds to multiplying r(i) and v(i+l) instead of adding them. Second,

removing d(i) into v(i) now corresponds to minimization of v(i) over d(i) instead of

maximization.

Thus risk sensitive, finite horizon MDPs can be formulated and solved as influence ." "

diagrams in a straightforward fashion.

Markov Decision Process with Random Rewards

For a third example, consider an MDP with random rewards. Also, assume the user

did not represent the value node as a sum node though the value function is the sum of

the random stage rewards. The influence diagram for this MDP is in Fig. 5.4 which

also shows the data subframe of the value node.
II

rO ,~ l r(2) r3) .,.)IV

(. .. (V (kind det)

(type value)
(function (+ r(O) r(1) r(2) r(3) r(4)))
(preds r(O) r(1) r(2) r(3) r(4))) . . .

Figure 5.4. An MDP with random rewards including the data subframe for

the value node.

107

.r
~ >i~r~h;2.. .- * .. ,.



X(O) (1) (2)X(3)x (4

d()dl ()d3

(pes i g2 g3 g4 g5

(gV (kind det)i ~ ~(type sumvl)
(preds r(O2))) 4 5)

(g21 (kind det)
(type subvalue)
(function r(1 ))
(preds r(1)))

(g3 (kind det)
(type subvalue)
(function r(2))
(preds r(2)))

(g4 (kind del)
(type subvalue)
(function r(2))
(preds r(2)))

(g5 (kind de)
(type subvalue)
(function r(3))
(preds r(4))).

(a) After subvalue structure generation,

108



1 76

(b) Expectation of g5 with respect to r(4).

(c) Expectation of g4 with respect to r(3).

109



; I V

(d) Expectation of g5 with respect to x(4).

de (0b)lu noe adl garsumd(2 int (3)

110

r



%'

( ,) x(2) x(3). '-....

* D.' a'

(f) Maximization of g6 over d(3).

Figure 5.5. First few steps of the solution procedure for the MDP with
random rewards.

The first several steps of the solution process for this MDP are shown in Fig. 5.5a

through Fig. 5.5f. The data subframes for the nodes representing the value function

are shown in Fig. 5.5a. Note that the preprocessor of the algorithm, subvalue structure

generation, parses the value function to build the subvalue tree for the problem.

There are two important points to be made from this example. First, the algorithm

can easily handle the fact that the rewards are random. This ability of the subvalue

node influence diagram and the associated algorithm to easily solve decision processes

with structures that vary from the standard forms is one of its most important strengths.

Second, the model input by the user was a straightforward single value node influence

diagram. The user did not have to know anything about subvalue nodes, dynamic

. .. -

111 "

.-'



programming or MDPs. The only requirement on the input model was that the value

function be in a form that could be parsed. With this limited input from the user the

algorithm added the appropriate subvalue nodes and solved the decision problem by a

set of operations corresponding to dynamic programming.

5.2 MARKOV DECISION PROCESS WITH TIME LAG

A common deviation to the standard Markov decision process (MDP) formulation is the

case in which the next state x(k+ 1) depends not only on the current state and decision,

x(k) and d(k), but also on x(k-l), d(k-1) and so forth. This concept is referred to as

time lag. The influence diagram in Fig. 5.6 illustrates an MDP with time lag with each

state variable x(k+l) depending on x(k), d(k), x(k-1) and d(k-1). This problem could

be dealt with using standard dynamic programming techniques by defining an

augmented state variable. For the case in Fig. 5.6 the augmented state variable would

be the vector y(k) = [x(k), x(k-1), d(k-1)]. The decision process with this new state

variable would be similar to the standard MDP in Fig. 5.1 a, except the value node

would be a product node. Solving this influence diagram is equivalent to solving the

problem by dynamic programming. It is clear that using state augmentation means

forcing the problem into the standard MDP format.

1

E rE

-- ~112 -,

. . . . . .. . . . . . . . . . . . . . . . . .. o



S. (r r3) r(4)

Figure 5.6. Markov decision process with time lag. -

On the other hand the problem can be solved directly as originally formulated by, :.

applying the techniques in this thesis. The first several steps of the solution procedure :! !

are shown in Fig. 5.7a-g. Reformulating the problem to one with an augmented state [

variable is unnecessary. This is advantageous in that it saves the user the work of i2

reformulation and the original structure of the problem is maintained. i'-"

11311

.4"

r

7. -, ,

. .



° .

Iv

Ii...

U

() Autoati inroucio of xuau nodes

(b) Expectation of r(4) with respect to x(4).

F'-i

114 :

r(3)

. . . . . . .... . . .. 



(c) Subvalue node v(2) introduced.

() Suvl oe (2() an r() mulipled

d(O) dl) d(2 d115

r(O) v(2)

. . . . . .. . .. --. ~-'... .. . .. ...- ~.. .. . . .... . . .

A .L.v - .- ~ -. ~-



s.~xO' .~l X( X - ..-- 3) r-zr-- r-

d(O) dl) d(2

(e) Maximization of v(2) with respect to d(3).

(f) Expectation of v(2) with respect to x(3).

116



IF

)*. p

-p%

ote Xm11n (2)

(g n3 +trodctino T s'ub,.,,tl.e node v(1 an ,, .,ndtt d odes r 1 ) a n d -(1), nx s mme.  t '''

pr~Anolther imrx,,t catd atar ofI sl in ths problemfrue as an influence is.tha

I..•

doiarm so m oicit! 5.de.ease% thke ,,cdt toae requirements2) d-l and comptatona

(On)l Inoductn o uba ue l od r) ,, and e noes rnd. andev(2) se d.ac eh -)

have n tutco isi Tpren s the aumernte te state variable. y(k) = ix(k) x(k-), d(k-1)], has

n~ouc'msThnl. 1111t e % tK i ,niniOncd onl ),(k-l I and d(k-l1), n x n3 x 3 n

pr-ohbilitiejs 111Lt ,,C ,,k)TC" !k -r %ik, It the problem is formulated as ant influence

d ia,-,rarn a s i n JI 5.6- . cach li x K is conditioned on x(k- 1), x(k-2), dlk- 1) and d(k-2).

ON n n -n n n n50 prohbhilizies must be stored. Likewise, to roll back each

staa-e of the decision process %% ith the Maugmnited state variable requires an operation of

order n7 . The largest operation lecessar in order to solve the problem directly as a if

subvalue node influence dia ,ram is of ordcr n5 ,

17''.

." ~1 17 ::-

_ . = ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . ... . . . . . . -,m= . ' ." .,2 a .. - , a ,._ . - ._ .' a= .



Thus for this problem the subvalue node influence diagram is quite valuable. It

saves the user the work of reformulation. It allows the problem to be solved in a

framework that captures the structure of the original problem. Finally, it reduces the

number of probabilities stored for each state variable by 2 orders of magnitude and

reduces the size of the largest operation in the solution procedure by 2 orders of

magnitude. Remember though, the exact mapping between the influence diagram and

the probability calculus. Because of this exact mapping, these same efficiencies could

theoretically be obtained by solving the problem in the probability calculus. However,

if the problem did not fit into the standard MDP format, computer tools for solving it

would not be readily available. The influence diagram provides an effective basis for

developing computer tools that can routinely solve decision processes that do not fit the

standard MDP format and thus routinely provide the efficiencies discussed above when

possible.

5.3 PARTIALLY OBSERVABLE MARKOV DECISION PROCESS

The influence diagram cannot be used to directly solve any practical partially observable

Markov decision process (POMDP). The reason is that the POMDP formulation does

not satisfy the principle of optimality as discussed in Section 4.2. The influence

diagram, however, can be used to consider the formulation of POMDPs and the

reformulation of the model necessary to apply the state of the art POMDP algorithms. r
The influence diagram for a three stage POMDP is presented in Fig. 5.8.

118 r



I.'3

maimzer() wihrsett( 1oeer eas r(2) pnso ()adx

V5

)Figure 5.8. A partially observable Markov decision process o;vy-)a

First, the influence diagram can be used to show the problem of trying to solve the

POMDP in a straightforward wa . The first step in solving for the optimal policy is to

maximize r(2) with respect to d(2). However, because r(2) depends on x(2) and x(2)"--

is not observed by d(2), x(2) must first be removed by reversing the x(2) to z(2) arc .. .

and then removing x(2) into r(2) by expectation. But this results in r(2) becoming .. :

dependent on x(1) which is not observed by d(2) either. Thus x(1) must be removed. 212

It turns out that before we are able to maximize r(2) over d(2), all the state variables "

x(k) have to be removed and in the process r(2) becomes a successor l o every z(k) and

Iid(k) in the problem. This undesirable state of affairs is is directly attributable to the fact .

that the original formulation of the PONIDP did not satisfy the principle of optimality....

At this point in the solution process, the subset rule indicates that all the reward I---

nodes should be summed, that is reduced into the value node. What is left is an

influence diagram with no subvalue nodes that can be sok ed by the solution techniques

119
.'r o "

.d [.. . ..



for single value node influence diagrams. However, the computational resources

required to solve this influence diagram grow exponentially with the number of stages.

It is impractical to solve almost any reasonable POMDP with this technique. I

The key to solving the PONMP is to recognize that though the current state is

unobservable to the decision maker when the current decision must be made, the

decision maker does know his probability distribution on the current state. By

reformulating the POMDP with the probability distribution of the current state as the

state variable, an MDP is produced that does satisfy the principle of optimality. This

reformulated problem is still difficult to solve because the outcome space of each of the

state variables is the whole real line rather than finite. However, special algorithms

exist to solve this problem that exploit the special structure of the value function.

Because of this nature of the outcome space this reformulated process cannot be

solved with current influence diagram tools. However, the influence diagram can be

used to illustrate the reformulation of the POMDP to a form suitable for the POMDP

algorithms. To do this, we need the idea of separating a chance node into two nodes,

one representing the probability distribution of the node and one representing the

outcome of the node conditioned on its probability distribution. Also, the theorem for

removing chance nodes must be generalized.

Consider the influence diagram in Fig. 5.9a. We note two things. First, given the

values of a and b we know for sure the probability distribution of x. Second, the

probability distribution for x represents the decision makers total knowledge of random

variable x. Thus, given the probability distribution of x, no other variable in the

diagram provides any useful information on the outcome of x. These arguments are

represented in the influence diagram in Fig. 5.9b. Variable nt, the probability

distribution of x, is a deterministic function of a and b. The variable x is a random

variable and is independent of all other variables in the diagram given 7E.

120



a ba b FIF

x0
11 .7
12.6

Y X 21.2
22 .5

ab 1 2 y 1 2
11.7 .3 .7.7 .3
12.6 .4 .6.6 .4
21 .2 .8 .2.2 .8
22 .5 .5 .5.5 .5

(a) (b)

Figure 5.9. Inserting a variable representing the probability distribution of
a chance node.

A Section 2.3, it is possible to remove the dependency of a subvalue node on a

chance node though the chance node has successors which are not subvalue nodes. In

this case the chance node remains in the diagram after the dependency is removed. One

can think of this operation as removing an arc. This operation is only useful when a

decision process is stationary and so can be fully represented by an influence diagram

of a single stage of that process. The POMDP is such a problem. Reformulating it can

be accomplished on an influence diagram of a single stage. However, the idea of

representing a decision process by an influence diagram of a single stage is not fully

developed, so the PONIDP reformulation depicted here is performed on all stages of a

three stage process. The idea of removing an arc will be needed. The conditions

necessary for this to be a valid reduction of the influence diagram are stated without

121

%L
--.' :. -. -. -. -. ,'.. -- -'..', .-.. i,-i,- .- . .--. '.-',. .- ,. .-.- '.-,-..'.-- -',- .* .- , - .' ,- - ' -- .''.. -*. .. '..-...". . . -



proof in the following theorem. First, a blocking subvalue node, a concept closely

related to a blocking product node, must be defined. %

Definition. A blocking subvalue node b with respect to node x and subvalue

node r is a subvalue node with predecessors r1 and r2 such that r1 is on the

directed path from r to b and node x is a functional predecessor of both rI and r2.

Theorem (Are Removal). If x is a chance node in an influence diagram and

j a) x directly precedes some subvalue node r

b) the directed path from r to the value node contains no blocking subvalue

node with respect r and x or with respect to r and any successors to x,

then the dependency of r on x (the arc from x to r) can be removed by expectation -

of r with respect to x.

With these two ideas in hand, the reformulation of the POMDP goes as in

Fig. 5.10.

Note that after the reformulation each stage reward r(k) is independent of the

observation z(k) given nr(k). This is seen in Fig. 5.10i. Because of this conditional

independence, the arc from z(k) to d(k) can be ignored when making the decision d(k).

Therefore, the z(k) to d(k) arcs can be removed. This is the influence diagram

representation of the sufficient statistic argument of MDPs with incomplete state

information.

122

.4T- '-

. . .



'S (0) X )x 2

(a) Expectation of each r(k) with respect to z(k+1).

(b)(O Expcta)o ofecd(k2)t e'.c o ~+

123



L 0 ~ 2

(c) Arc x(O) to z(O) reversed.

124

r



-7 71. - .v_ %7.;-- - -"i 'OL, 7

06a

(0).

(d Nde7(O) introduced

125



VI ~ ... ' .AJ' ...~F ~ ~ ~ WJV.~V.E C iw .- ~ - - .- . .

V -*

I.-'. ..

(e) Expectation of r(O) with respect to x(O).

12.

126..ii:

'4 :- -F

.........." ........ ..-.-".".-.-.-,-...,...-,-%-".. '..'-.-.,.'--- ,....,...',* *,,-.*< -t-%?-,,.; -":" .2%v.-- *. : !.



IF

(f)Noe (O) reoe it ( bsumto ov r(ei2oit

VL

127

-':.-.-.-.:



Ki4

(0)~

(g) Arc x(l) to z(1) reversed.

128



,-.%

()N d() dodued d(2

129

. . . -.



LLI

.' '1

(i) After the remaining transformations.

Figure 5.10. Reformulation of the POMDP to a form suitable for the
available algorithms.

As mentioned before, the space of the state variables of this MDP is the reals and

the influence diagram cannot be solved with the methods in this thesis. The algorithms

that can solve the reformulated POM'DP use special techniques based on the unique

properties of its value function.

5.4 INVENTORY PROBLEM WITH FORECASTS AND

CORRELATED DEMANDS

AMarkov decision process is frequently formulated with the state vral en

deterministic function of thle previous state, previous decision and a random variable

130

P..I ° .r _._.



that is associated with each stage. The random variable at each stage is usually

unobservable and independent of the random variables in other stages. Such an MDP

formulation is shown as an influence diagram in Fig. 5.11.

0,

Figure 5.11. Alternative formulation of the MDP.

Two common complications to this basic formulation are dependence between the

random variables from stage to stage and the availability of forecasts on future values

of this variable. These complications are usually handled by augmenting the state

variable such that the new state variable is a vector.

A good example is an inventory problem. The random variable is the demand for

the inventory product at each period. The decision maker must decide what quantity to

order to satisfy demand in the current period. When the order decision must be made

the decision maker will know what the demand was in the previous period and a

forecast of what demand will be in the current period. The quantity in the current

inventory is also known. The key information that the decision maker does not know

131

.%%]



is what the demand will be in the current period. Costs include the purchase cost of

new items, a holding cost for items remaining in the inventory at the end of the current

period and the cost of unmet demand. There can be back ordering and so negative F.-

amounts of inventory are allowed..-.7k

A three stage version of the inventory problem is modeled by the influence diagram

in Fig. 5.12. The first several steps of the solution procedure are depicted in Fig.

5.13.

dO d1 d2

Figure 5.12. The three stage inventory problem.

132



V.V

(a) Expectation of r(2) with respect to d(2).

(b) Mxmztof r 2 ovro2)

dO d

133

a,



-~~~ - -. *.=.

1 6m

f4k fl

dO\ dl NI

so Sl s2

00 F.

(c) Expectation of r(2) with respect to f(2).

fIf

d'-'d-

(d) Deterministic node s(2) removed into r(2).

134



4.

Ile

summed into v(1).

Figure 5.13. Solving the inventory problem.

As mentioned above, this problem could be solved by augmenting the state

S variables and so fitting it into the standard Markov decision process format. The

augmented state variable would be a vector containing the forecast, demand and stock

variables. Call this single state variable x(k). The resulting MIDP would be represented

I as the influence diagram in Fig. 5.14.

,

135

i 
'

. .

* .* 
. - -



ii:

Figure 5.14. Influence diagram for inventory problem in standard MDP
format.

Let us compare the data storage requirements and computational complexity of

solving this problem first, by fitting it into the standard MDP format and second, by

influence diagrams. For the sake of simplifying the discussion assume that f(k), d(k)

and s(k) each have n outcomes and o(k) has n alternatives. Then in the standard MDP

formulation x(k) will have n3 possible states. Since o(k) has n alternatives and x(k) is

conditioned on x(k-1) and d(k-1), we need to store n4 probability distributions for each -.-

x(k). Each distribution will contain n3 probabilities since the state has n3 outcomes.

Thus n7 probabilities must be stored for each x(k). Likewise, each stage reward will

be conditioned on x(k), o(k) and x(k+ 1). Therefore, n7 values must be stored for each

stage reward.

Solving the resulting MDP corresponds to solving the influence diagram in Fig.

5.14. For each stage, the state must be removed by expectation. Then the decision is .

136

• I



removed by maximization. Finally, v(k-l) is introduced and v(k) and r(k-1) are added.

These operations have costs n7 , n4 and n7 respectively.

Alternatively the problem could be solved directly as an influence diagram with no

reformulation or state augmentation required. In this case the original structure of the ,!
problem is maintained. The problem is solved using the original variables, not vectors

of these variables. This is very important in that the conditional independence between

the variables in each stage and between the stages can be exploited to both reduce the

data requirements and the computational resources required for solving the problem.

In the present problem, as depicted in Fig. 5.13, to solve for each stage, d(k) is

removed by expectation then o(k) is removed by maximization. Variable f(k) is then

removed by expectation and s(k) is removed deterministically. Finally, v(k) and r(k-1) . -.

are removed by adding them together. The costs of these operations are n5 + n3 , n4,

n3 , n4 and n3 respectively. The largest operation is now of order n5 instead of n7 as

for the strict MDP formulation. If there is additional conditional independence in the

problem the influence diagram can easily exploit it. For example, if the demands are

conditionally independent from one stage to the next then the above operations have

respective costs n4 + n2 , n3 , n2 , n4 and n3.

There is also a large decrease in data storage requirements. Variable s(k) can be left

as a deterministic variable. Only one probability distribution is required for f(k) of n

elements. For d(k), n2 distributions are required, each with n elements. Therefore

only n + n3 probabilities are required to be stored for each stage. Each r(k) is a

function only of d(k), o(k) and s(k) so only n3 reward values must be stored compared

to n7 in the strict MDP formulation. Not only are data storage requirements much less

but they should be easier to assess in that they are in terms of the variables in the

problem as originallv formulated. ""-

137 W,



Again, remember that influence diagrams and operations performed on them are

only a graphical mapping of models and model manipulating operations in the

,., probability calculus. Thus the exact same efficiencies discussed above can be obtained .

by solving the problem within a probability calculus framework. However, as

discussed at the end of Section 5.2, the influence diagram provides a superior basis for 4.-

developing computer tools that routinely provide these efficiencies. -

5.5 VOYAGER MARS

An interesting application of decision analysis was to the selection of mission I

configuration in NASA's Voyager Mars project. This example illustrates several

important points about the relationship between influence diagrams and decision trees

and the their relative merits. Two important aspects of the problem are coalescence and

asymmetry which were discussed in Section 4.1.

In the problem there are a sequence of missions to the planet Mars. The immediate

objective is to gain scientific knowledge about the atmosphere and surface of the

Martian planet. There is a broad range of alternatives for the configuration of each

mission. The configurations range from a simple atmospheric probe to a lander capable

of soft landing on the surface of the planet and then carrying out life detection

experiments. Each mission has a cost that depends both on the configuration of the

present mission as well as on experience with configurations on previous missions. -

Each mission provides benefit in several forms. There is a direct scientific contribution

and a benefit to other space programs. There are also the less direct benefits of

enhancing the perception of the U S. public for the space program and improving

world opinion of the U.S. "

Three models of this decision problem were developed in the original decision

analysis: a full scale model, a pilot model and a simplified pilot model. All were

138

- . . . -t . . 4g * .g -i



originally modeled as decision trees. These trees captured the asymmetry and

coalescence in the problem. In the present research the simplified pilot model has been

modeled as an influence diagram. The influence diagram has been solved using the 1WF-.

techniques and software developed in this thesis as implemented in ExperLisp on the

Macintosh computer. The pilot model has also been formulated as as influence diagram

but not analyzed on the computer. It is, however, used to compare the relative merits

for this problem of trees and influence diagrams.

The influence diagram for the simple pilot model is shown in Fig 5.15. An .

interesting aspect of the model is the information structure. For example, the P""
configuration for the second mission (variable s(l)) must be decided upon before the

outcome of the first mission (variable m(O)) is known. This unique structure is made

explicit in the influence diagram.

Figure 5.15. Influence diagram of the Voyager Mars simple pilot model.

- I

Another interesting feature of tile problem is the value structure. Note from the

influence diagram in Fig. 5.15 that the value function is the sum of the deterministic -

139

...............................



costs and benefits. This feature was very important in solving the original decision treeN

* models in that it significantly reduces the size of the trees by coalescence.

To apply coalescence is a significant modeling effort for problems of the F-

complexity of the Voyager Mars decision analysis problem. On the other hand, the '~..

subvalue node influence diagram and the associated algorithm automatically exploit the

additive nature of the value function. The only work required by the user its to

formulate the problem with all additivity in the value function made explicit. There are

three ways this can be done. First, the additivity can be represented by a full subvalue

node structure as shown in Fig. 5.16a. This places the most burden on the user and

the least on the algorithm. Second, the user could just represent the fact that the value

function is a sum without building a full subvalue node structure as in Fig. 5.15. --

Third, the user could formulate the model as a single value node influence diagram not

even representing explicitly the cost and benefit variables. In this case the value

function stored in the value node must be able to be parsed. In the second and third

case the preprocessor of the algorithm builds the full subvalue structure producing the l
influence diagram of Fig. 5.16a.

The first several steps of the solution process for solving the influence diagram of

the simple pilot model are depicted in Fig. 5.16.

140



M()M()m2)M3

S(O)SO) s(2 s(3

C(O V(*lV1 () () c3 (

a' -'a

(a) With subvalue nodes introduced.

M(I) m(2

(b) Application of the subset rule.

irL

141



(c) Expectation of v(3) with respect to m(3).

(d) Application of the subset rule.

142

L-

z.................... A



I. M1

S() (1 (2-S3

Q1* g2 g3

*ft

(e) Expectation of g4 with respect to m(2).

() Appicaio of2 thSsbetrue

143



i Li

"l •

I

(g) Maximization of g5 over s(3).

(h) Expectation of g5 with respect to m(1),

iM

Figure 5.16. Solving the Voyager Mars simple pilot model.

Though the influence diagram is a powerful tool for applying coalescence to

separable value functions, it is very weak in its ability to exploit asymmetry in a

144

I '1..'i



decision model. To illustrate this we consider solving the full pilot model of the

Voyager Mars decision analysis using both an influence diagram and a tree. The

influence diagram is an eight stage version of the four stage decision process of Fig. IF

5. 15. The tree is in Fig. 4 on page 460 in [M21. The chart in Fig 5.17 summarizes the

results. It is clear that the inability of the influence diagram to model asymmetry gives

the tree a substantial advantage for this problem in computational resources required for

solution.

Asymmetric Asymmetric Influence Influence Symmetric
tree, tree, no diagram diagram tree, no

coalescence coalescence with without coalescence
subvalue nodes subvalue nodes

Order ofcompu- 2 3 4 11 11
tational complexity 10 10 10 10 10

Figure 5.17. Computational complexity using the different modeling
techniques.

The advantage of the influence diagram is that first, it provides a natural and

intuitive model. It explicitly shows the interesting dependency and information

structure of the problem. It provides a model of the problem that both captures the

problem structure that is important for the decision maker and the analyst while at the

same time is an effective framework for solving the model. A second important

advantage of the influence diagram is that it allows for straightforward exploitation of

the separable value function in this problem. The model need not be handcrafted to

exploit its separable nature. On the other hand the influence diagram cannot capture nor

exploit asymmetry. For this problem this means a substantial increase in computational

cost.
97.

145



NOTES AND REFERENCES

Section 5.1. The original work on risk sensitive Markov decision processes is by
IF-

Howard and Matheson [H51.

Section 5.2. An introduction to Markov decision processes with time lag and other

complications to the standard MDP formulation is presented in the book by Bertsekas

[B31.

Section 5.3. The state of the art algorithm for solving POMDPs is due to Sondik

and Smallwood [S41.

Section 5.4. This alternative formulation for the MDP is quite common. A good

reference is [B3]. This book also covers state augmentation.

Section 5.5. The Voyager Mars application of decision analysis is described in the

paper by Matheson and Roths [M21 and discussed briefly in the paper by Matheson

[Ml].

146

C - . . 4 - .. . . . ..



Z. K-.

Chapter 6

Conclusions and Further
Research --

It

6.1 FURTHER RESEARCH

If a decision process is stationary, then the information contained in each stage is

sufficient to represent the entire decision process. This makes it pra.,.tical to model and

analyze finite horizon decision processes of many stages and infinite horizon decision

processes. Such processes are both common and important. Therefore. it is desirable

to extend influence diagram theory so that stationary decision processes can be

represented and analyzed with a influence diagram of a single stage of the process.

There are several problems and opportunities to be investigated in this area. An

unambiguous representation of the decision process by a single stage influence diagram

must be developed that is consistent with current influence diagram theory. Also,

algorithms must be developed for solving influence diagrams representing infinite

horizon decision processes. It is not clear what algorithms for solving infinite horizon

decision processs in the probability calculus are applicable to an influence diagram

formulation. The successive approximations algorithm appears to be a hopeful first

attempt. An opportunity offered by the single stage influence diagram representation of%

147

............



a decision process is simplification. The entire decision process can be simplified by

operations on just the single represented stage. An example of this is removing the

x(k+ 1) to r(k) arcs in the alternative formulation of the Markov decision process

discussed in Section 2.3. K>
Two current research areas in influence diagram theory are finding the optimal

ordering of node removals in evaluating influence diagrams and allowing the outcome K

and alternative spaces of influence diagram variables to be the real numbers when the

joint probability distribution of the influence diagram is multivariate normal. Both of

these areas promise to provide results that could be profitably combined with the results

of this thesis.

As mentioned in Section 1.5, influence diagrams with some restrictions can be .

used in the analysis of the structural controllability of a dynamic system. This is a

promising application of influence diagrams because they explicitly represent some of

the critical aspects of a system for this theory.

6.2 CONCLUSIONS

The influence diagram with subvalue nodes is an effective tool for formulating and

analyzing decision problems with separable value functions. It provides a basis for

algorithms that recognize and exploit this separable nature to efficiently solve such

problems. The most important class of problems with separable value functions is

decision processes. In solving decision processes the subvalue node intluence diagram

and its associated algorithm automatically recognize opportunities for applying the

principle of optLrnality. It uses the principle of optimality if possible in solving the

decision process, thus effectively performing dynamic programming on the problem.

No assistance from the user is required beyond representing the sums and products in

the value function in the proper fashion. The influence diagram condition for the

148

-- F.



principle of optimality can be used to guide the analyst toward a formulation of a

decision process that satisfies the principle of optimality. This makes an important

difference in the practicality of solving the decision process.

By solving decision processes in the influence diagram framework the conditional

independence among the variables in the problem can be exploited to significantly

decrease data storage requirements and computational complexity. Finally, the
K--

subvalue node influence diagram provides an insightful framework for considering

some of the critical characteristics of decision processes.

NOTES AND REFERENCES

Section 6.1. The research on optimal ordering of node removals in evaluating

influence diagrams is the subject of the thesis by Ezawa [El]. The research on the -

normal distribution and influence diagrams is represented by the paper by Shachter and

Kenley [S3]. Structural controllability of dynamic and descriptor variable systems is

the subject of the thesis by Yamada [Y 1.

149

4..''°

149 "-:

r".



References

%0 %

[B 1 Bellman, R. Dynamic Programming. Princeton, N.J.: Princeton University

Press, 1957.

[B21 Bertsekas, D. P. "Distributed Dynamic Programming." IEEE Transactions on
Automatic Control AC-27 No. 3 (June 1982): 610-616.

[B3] Bertsekas, D. P. Dynamic Programming and Stochastic Control. New York:
Academic Press, 1976.

[B41 Borison, A. B., P. A. Morris and S. S. Oren. "A State of the World .-
Decomposition Approach to Dynamics and Uncertainty in Electrical Utility
Generation Expansion Planning." Operations Research Vol. 32 No. 5
(September-October 1984): 1052-1068.

(B51 Boschi, R. A. A., H. U. Balthasar and M. M. Menke. "Quantifying and
Forecasting Exploratory Research Success." Research Management Vol.
XXII No. 5 (September, 1979): 14-21.

[C II Claudio, C. Design and Evaluation of lVarning Systems: Application to
Nuclear Power Plants. Ph.D. Thesis, Dept. of Engineering-Economic Systems,
Stanford University, Stanford, Calif., 1985.

[DII Demin, V. K. and A. A. Osadchenko. "Decomposition for the Control of
Markovian Processes." Cybernetics Vol. 18 No. 3 (May-June 1983): 383-389.

[E I j Ezawa, K. J. Efficient Evaluation of It~uence Diagrams. Ph.D. Thesis, Dept.
of Engineering-Economic Systems, Stanford University, Stanford, Calif., 1986.

[FI] Forrester, J. W. Industrial Dynamics. Cambridge, Mass.: MIT Press, 1961.
[HI] Haussman, U. G. "Some Examples of Optimal Stochastic Controls Or: The

Stochastic Maximum Principle at Work." SIAM Review Vol. 23 No. 3 (July,
1981): 292-307.

11121 leyman, D. P., NI. Sobel. Stochastic Models in Operations Research, Vol I
and 11. New York: McGraw Hill, 1984.

150

-~ ~'.A 1 ... &- ...



[H31 Howard, R. A. Dynamic Programming and Markov Processes. Cambridge,
Mass.: MIT Press, 1960.

[114] Howard, R. A. and J. E. Matheson. "Influence Diagrams." In The Principles
and Applications of Decision Analysis, eds. R. A. Howard and J. E. Matheson. U
Strategic Decisions Group, 1983, 719-762.

[115] Howard, R. A. and J. E. Matheson. "Risk-Sensitive Markov Decision
Processes." In The Principles and Applications of Decision Analysis, eds. R. A.
Howard and J. E. Matheson. Strategic Decisions Group, 1983, 881-896.

[H6] Howard, R. A. and J. E. Matheson, eds. The Principles and Applications of
Decision Analysis. Strategic Decisions Group, 1983.

[H71 Howard, R. A., J. E. Matheson and D. W. North. "The Decision to Seed
Hurricanes." Science Vol. 176 (16 June 1972): 1191-1202.

[K1] Krikorian, K. V. and C. T. Leondes. "Dynamic Programming Using Singular
Perturbations" Journal of Optimization: Theory and Applications Vol. 38 No. 2
(October, 1982): 221-230.

[LI] Lendaris, G. G. "Structural Modeling - A Tutorial Guide." IEEE Transactions
on Systems, Man and Cybernetics SMC-10 No. 12 (December 1980): 807-840.

[M1] Matheson, J. E. "Decision Analysis Practice: Examples and Insights." In The -.

Principles and Applications of Decision Analysis, eds. R. A. Howard and J. E.
Matheson. Strategic Decisions Group, 1983, 209-225.

[M2] Matheson, J. E. and W. J. Roths. "Decision Analysis of Space Projects:
Voyager Mars." In The Principles and Applications of Decision Analysis, eds. R.
A. Howard and J. E. Matheson. Strategic Decisions Group, 1983, 445-475.

[M31 Miller, III, A. C., M. M. Merkhofer and R. A. Howard. Development of
Automated Aids for Decision Analysis. Menlo Park, Calif.: Stanford Research
Institute, 1976.

[M41 Monahan, George E. "A Survey of Parially Observable Markov Decision
Processes: Theory, Models, and Algorithms." Management Science Vol. 28 No.
1 (January, 1982): 1-16.

[011 Olmsted, S. M. On Representing and Solving Decision Problems. Ph.D.
Thesis, Dept. of Engineering-Economic Systems, Stanford University, Stanford,
Calif., 1983.

[P 1] Pratt, J. W., H. Raiffa, R. Schaiffler. Introduction to Statistical Decision
Theory. New York: McGraw-Hill, 1965.

IRI] Raiffa, H. Decision Analysis. Reading, Mass.: Addison-Wesley, 1968.

[SI] Scheel. C. "A Procedure for the Decomposition and Evaluation of Multivariable
Optimal Control Problems." In 26th Midwest Symposium on Circuits and Systems,
1983.

[S21 Shachter, R. D. "Evaluating Influence Diagrams." Submitted for publication,
Dept. of Engineering-Economic Systems, Stanford University, May 1984.

[S31 Shachter, R. D. and R. Kenley. "Normal Distribution and Influence
Diagrams." Submitted for publication, Dept. of Engineering-Economic Systems,
Stanford University, July, 1985.

151

..



.' -. **- .""-", ..i L7 2 . ". " " ,' " . w ,,, ." J

[S41 Smallwood, R. D., E. J. Sondik. "The Optimal Control of Partially
Observable Markov Processes over a Finite Horizon." Operations Research Vol. 1%
21 No. 5 (September-October 1973): 1071-1088.

OF

[T1] Tani, S. N. "Decision Analysis of the Synthetic Fuels Commercialization
Program." In The Principles and Applications of Decision Analysis, eds. R. A.
Howard and J. E. Matheson. Strategic Decisions Group, 1983, 435-443.

[T21 Tse. E. and Y. Bar-Shalom. "An Actively Adaptive Control for Linear Systems , !
with Random Parameters via the Dual Control Approach." IEEE Transactions on
Automatic Control AC-18 No. 2 (April 1973): 109-117.

[Y 11 Yamada, T. Structural Controllability and Observability of Linear Time-
Invariant Descriptor Systems. Ph.D. Thesis, Dept. of Engineering-Economic
Systems, Stanford University, Stanford, Calif., 1983.

.

'K'

r

152
1


